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ABSTRACT: 

 

Feature fusion of remote sensing images and LiDAR points cloud data, which have strong complementarity, can effectively play the 

advantages of multi-class features to provide more reliable information support for the remote sensing applications, such as object 

classification and recognition. In this paper, we introduce a novel multi-source hierarchical conditional random field (MSHCRF) 

model to fuse features extracted from remote sensing images and LiDAR data for image classification. Firstly, typical features are 

selected to obtain the interest regions from multi-source data, then MSHCRF model is constructed to exploit up the features, 

category compatibility of images and the category consistency of multi-source data based on the regions, and the outputs of the 

model represents the optimal results of the image classification. Competitive results demonstrate the precision and robustness of the 

proposed method. 

 

1. INTRODUCTION 

Nowadays, there are many different sources of earth observation 

data which reflect the different characteristics of targets on the 

ground, so how to fuse the multi-source data reasonably and 

effectively for the application, such as object classification and 

recognition, is a hot topic in the field of remote sensing 

applications. In all the data mentioned above, remote sensing 

images and LiDAR points cloud have strong complementarity, 

so fusion of the two sources of data for object classification is 

attached more and more attention and many methods were 

proposed. In general they can be classified into image fusion 

(Parmehr et al., 2012; Ge et al., 2012) and feature fusion (Deng 

et al., 2012; Huang et al., 2011). The methods for image fusion 

always include different resolution data sampling and 

registration, so the processing is time-consuming, and will 

inevitably lose a lot of useful information, which reduces the 

accuracy of the subsequent image classification. In the feature 

fusion methods, the features are usually extracted independently 

from different sources data, and the fusion lacks consideration 

of correspondence of location and contextual information, so 

the classification results could be improved. In addition, 

because the features selected in some methods are not invariant 

to rotation, scale, or affine, they are always poor in stability. In 

order to overcome the shortages of former methods, this paper 

presents a novel multi-source hierarchical conditional random 

field (MSHCRF) model to fuse features extracted from remote 

sensing images and LiDAR data for image classification. Firstly, 

typical features are selected to obtain the interest regions from 

multi-source data. Then MSHCRF model is constructed to 

exploit up the features, category compatibility of images and the 

category consistency of multi-source data based on the regions, 

and the outputs of the model represents the optimal results of 

the image classification. 

2. DESCRIPTION OF FEATURES SELECTED 

In remote sensing images and LiDAR data, while the abundance 

of information offers more detailed information of interest 

objects, it also enhances the noises. Selection of appropriate 

features in a reasonable way is important in our method. 

 

In order to provide a reliable basis for subsequent processing, 

the proposed model contains five kinds of typical features: local 

saliency feature (LSF), line feature (LF) and texture feature (TF) 

are extracted from remote sensing images, mean shift feature 

(MSF) and alpha shape feature (ASF) are from LiDAR data, so 

it's robust to background interference, change of scale and 

perspective, etc. 

 

The detector of K&B (Kadir et al., 2001) is a representative 

LSF, which is invariant to viewpoint change, and sensitive to 

image perturbations. We utilize the detector of K&B to 

calculate saliency of each pixel in the images. 

 

LSD is a linear-time line segment detector that gives accurate 

results, a controlled number of false detections, and requires no 

parameter tuning. In accordance with the method introduced in 

(Grompone et al., 2010), we can calculate the response value at 

each pixel. 

 

As the basic unit of TF, Texton is utilized to distinguish 

between foreground and background regions effectively and 

increase the accuracy of the results. Similar to the method in 

(Shotton et al., 2009), we can obtain the response to Texton of 

each pixel in the image. 

 

For the sparseness and discreteness of LiDAR points cloud data, 

we utilize an adaptive mean shift algorithm which is a sample 
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point estimation method based on data-driven. In our model, the 

specific process of achieving the MSF is introduced in 

(Georgescu et al., 2003). 

 

Based on the planar features obtained, the alpha shape 

algorithm is used to extract the boundary contour of each target, 

and then the Delaunay triangulation is used to get the line 

feature of LiDAR points cloud. The extraction of the ASF refers 

to (Shen et al., 2011). 

 

3. FEATURE FUSION USING MSHCRF 

In the field of image processing, the regions of interest are 

usually detected independently, but considering the relative 

position between regions in single data and the correspondence 

between regions from multi-source data, the labelling of every 

region should not be independent. The Conditional Random 

Field (CRF) model is an effective way to solve the problem of 

prediction of the non-independent labelling for multiple outputs, 

and in this model, all the features can be normalized globally to 

obtain the global optimal solution. 

 

In view of the advantages above, based on the standard CRF 

model, we propose the MSHCRF model to learn the conditional 

distribution over the class labelling given an image and 

corresponding LiDAR data, and the model allows us to 

incorporate LSF, LF, TF, MSF, ASF and correspondence 

information in a single unified model. The conditional 

probability of the class labels c given an image I and LiDAR 

data L is defined as follow 
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where  is the model parameters, Z( ,I,L) is the partition 

function, i and j index nodes in the grid corresponding to the 

positions in the image, and k index nodes in the grid 

corresponding to the positions in the LiDAR points cloud. N is 

the set of pairs collecting neighborhood in the image and H is 

the set of corresponding pairs collecting neighborhood in both 

images and LiDAR data. P1 is the unary potentials, which 

represent relationships between variables and the observed data. 

P2 is the pairwise potentials, representing relationships between 

variables of neighboring nodes. P3 is the hierarchical pairwise 

potential, which represents corresponding relationships between 

images and LiDAR data The full graphical model is illustrated 

in Figure 1. 

 

3.1 Unary potentials 

The unary potentials are consisted of three element: LSF, LF 

and TF potentials, predict the label ix  based on the image I 
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Figure 1. Illustration of the MSHCRF model architecture. Red 

nodes with No.1 correspond to regions extracted by the features 

selected in images, blue lines linking red nodes with No.2 

represent the dependence between neighbor regions, and purple 

lines linking red and green nodes with No.3 indicate the 

hierarchical relation between regions from multi-source data. 

 

In accordance with the methods described previously, we can 

calculate the LSF(i) of each pixel in the image to obtain the 

local saliency feature image, in which local saliency feature 

models are represented as mixtures of Gaussians (GMM), so 

there is  

 

 

( , ; ) log ( , ) ( | , )i LSF LSF k k
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where k represents the component the pixel is assigned to, μk 

and ∑k are the mixture mean and variance respectively, and 

parameter    
3 3

*( ) ( | ) 0.1 / ( | ) 0.1LSF i i i ii i
c c P k x P k x       

represents the distribution p(c|k), the mixture term p(k|xi)∝

p(xi|k), a class labeling ci* is inferred, and ( )   is a 0-1 

indicator function. 

 

Similar to the LSF potentials, we can get the line segment image 

LFI(i) by calculating the LSD in the image. The LF potentials 

take the form of a look-up table 

 

 

( , ; ) log ( , )LF LFLF c cx x                      (4) 

 

 

where parameter ( , ) 1 ( ) ( ) 0.1LF i ic c xx      represents 

the correlation between the value in LFI(i) and the label c. 

 

Based on the boosting learning algorithm, we can obtain the 

classifier of Texton, to which the responses are used directly as 

a potential, so that 

 

 

( , ; ) log ( | , )LFTF c P c ix x                   (5) 

 

 

where P(c|x,i) is the normalized distribution given by the 

classifier using the learned parametersθTF. 
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3.2 Pairwise potentials 

The pairwise potentials describe category compatibility between 

neighboring pixels xi and xj of the line segment image LFI(i) 

and the responses of Texton classifier on the image I. The 

pairwise potentials have the form introduced in (Yang et al., 

2011), and the pairwise potentials are the sum of two kinds of 

responses. 

 

3.3 Hierarchical pairwise potentials 

Compared to the remote sensing images, LiDAR points cloud 

have the characteristics of sparseness and discreteness, which 

like the low-resolution images sampled from the corresponding 

images, and the features extracted from multi-source data are 

different. So in order to enhance the fusion performance, we 

introduce the hierarchical pairwise potentials, which represent 

correspondence between the multi-source data, in our MSHCRF 

model. 

 

The hierarchical pairwise potentials describe category 

consisteny between the corresponding regions in multi-source 

data, from which we can obtain linear features, such as LF and 

ASF, and planar features, such as TF and MSF. In order to 

enhance the fusion performance, we refer to the consistency of 

the linear and planar features separately, note as Diffl (c,xi,lk) 

and Diffp (c,xi,lk). So there is 

 

 

3( , , ) ( , , , ) ( , , , )i k l i k l p i k pP c x l Diff c x l Diff c x l    (6) 

 

 

For describing the consistency of linear features, we firstly 

normalize each value of TF and ASF to get the ˆix and ˆkl , then 
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where the comparative item 2 1ˆˆ2 | |i kx l  （ < >） ,    indicates 

the global average, and θl needs to be selected manually to 

minimize the error on the validation set. 

 

As to the consistency of planar features, the calculation is 

similar to the one of linear features. 

 

3.4 Image classification with the MSHCRF model 

By the formula derivation, empirical deduction and training on 

validation data, each parameter can be learned respectively. 

Given a set of parameters learned for the MSHCRF model, the 

optimal labelling, which maximizes the conditional probability, 

is found by applying the alpha-expansion graph-cut algorithm 

(Boykov and Jolly, 2001), and it represents the optimal results 

of the image classification. 

 

4. EXPERIMENTS 

We conduct experiments to evaluate the performance of the 

MSHCRF model on the airborne data collected at Beijing, 

China, which include the remote sensing images with the 

resolution 1m and LiDAR points cloud with the point density 4 

points/m2. The objects in all images are labeled with 3 classes: 

building, road and trees. These classes are typical objects 

appearing in the airborne images. In the experiments, we take 

the ground-truth label of a region to be the majority vote of the 

ground-truth pixel labels, and randomly divide the images into a 

training set with 50 images and a testing set with 50 images. 

 

Figure 2 shows the classification result from MSHCRF model. 

We run the experiment on the whole test set, and get the overall 

classification accuracy 73.6%. For comparison, we also carry 

out another experiment by removing the hierarchical pairwise 

potentials from the model, namely classifying only with the 

remote sensing images, which is similar to the standard CRF 

model (Shotton et al., 2009), and the overall accuracy is 

decreased to 68.9%. Therefore, the MSHCRF model increases 

the accuracy by 4.7%. The parameter settings, learned by cross 

validation on the training data, areθTF = 0.35, θl = 0.12, and 

θp = 0.15. 

 

 
 Remote sensing image     LiDAR points cloud      Classification result 

Figure 2. The classification result from the MSHCRF model. (In 

the results, red - building, blue - road, green - tree.) 

 

Table 1 and Table 2 show two confusion matrices obtained by 

applying standard CRF model and MSHCRF model to the 

whole test set respectively. Accuracy values in the table are 

computed as the percentage of image pixels assigned to the 

correct class label, ignoring pixels labelled as void in the 

ground truth. Compared to the confusion matrix showing 

standard CRF model in Table 1, our MSHCRF model performs 

significantly better on building and road classes, and slightly 

better on tree classes. For the similarity in shape and texture 

between building and road classes in airborne remote sensing 

images, it is difficult to effectively distinguish them; while the 

difference in elevation of those classes in LiDAR data can be 

easily used for classification. 

 

Tr 

Pr 
building road tree 

building 63.7 19.2 17.1 

road 22.4 67.0 10.6 

tree 11.3 15.2 73.5 

 

Table 1. Pixelwise accuracy of image classification using 

standard CRF model. The confusion matrix shows classification 

accuracy for each class (rows) and is row-normalized to sum to 

100%. Row labels indicate the true class (Tr), and column 

labels indicate the predicted class (Pr). 
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Tr 

Pr 
building road tree 

building 70.1 15.8 14.1 

road 14.4 77.3 8.3 

tree 12.3 13.8 73.9 

 

Table 2. Pixelwise accuracy of image classification using 

MSHCRF model. The confusion matrix shows classification 

accuracy for each class (rows) and is row-normalized to sum to 

100%. Row labels indicate the true class (Tr), and column 

labels indicate the predicted class (Pr). 

 

In our MSHCRF method, we fuse the linear features, such as LF 

and ASF, and the planar features, such as TF and MSF, to 

ensure the accuracy of the image classification. In order to 

verify the necessities of the two kinds of features, we carried out 

three sets of experiments when retaining both kinds of features, 

or removing each kind, and Table 3 lists the performance 

comparison under different conditions. The results show that 

there are positive effects on the performance of image 

classification for both kinds of features, in which the linear 

features is less helpful to the increase of performance because 

they are difficult to accurately obtain in LiDAR points cloud 

data for the sparseness and discreteness. 

 

Feature Type Accuracy(%) 

Use both linear and planar features 73.6 

Remove the linear features 71.9 

Remove the planar features 69.4 

 

Table 3. Drop in overall performance caused by removing each 

kind of feature in the hierarchical pairwise potentials of 

MSHCRF model. 

 

5. CONCLUSIONS 

In conclusion, this paper presents a novel multi-source 

hierarchical conditional random field model for feature fusion 

of remote sensing images and LiDAR data. To exploit the 

features, category compatibility of images and the category 

consistency of multi-source data based on the regions selected 

with typical features, the MSHCRF model is built to classify 

images into regions of building, road and trees. We have 

evaluated our approach on airborne data, and the results 

demonstrate the precision and robustness of the proposed 

method. For the future work, we are interested in extracting 

more specific features and corresponding information from the 

multi-source data to improve the performance of classification. 
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