65 research outputs found

    Reproducing the CO-to-Hâ‚‚ conversion factor in cosmological simulations of Milky-Way-mass galaxies

    Get PDF
    We present models of CO(1–0) emission from Milky-Way-mass galaxies at redshift zero in the FIRE-2 cosmological zoom-in simulations. We calculate the molecular abundances by post-processing the simulations with an equilibrium chemistry solver while accounting for the effects of local sources, and determine the emergent CO(1–0) emission using a line radiative transfer code. We find that the results depend strongly on the shielding length assumed, which, in our models, sets the attenuation of the incident UV radiation field. At the resolution of these simulations, commonly used choices for the shielding length, such as the Jeans length, result in CO abundances that are too high at a given H₂ abundance. We find that a model with a distribution of shielding lengths, which has a median shielding length of ∼3 pc in cold gas (T < 300 K) for both CO and H₂, is able to reproduce both the observed CO(1–0) luminosity and inferred CO-to-H₂ conversion factor at a given star formation rate compared with observations. We suggest that this short shielding length can be thought of as a subgrid model, which controls the amount of radiation that penetrates giant molecular clouds

    Substituent position effects on sunscreen photodynamics : a closer look at methyl anthranilate

    Get PDF
    Towards the development of a bottom-up rationale for sunscreen design, the effects of substituent position on the ultrafast photodynamics of the sunscreen precursor methyl anthranilate (MA, an ortho compound) were evaluated by studying para- and meta-MA in vacuum. Time-resolved ion yield (TR-IY) measurements reveal a long-lived S1 excited state (≫ 1.2 ns) for para-MA, proposed to be the result of a weakly fluorescent, bound excited state. In the case of meta-MA, TR-IY transients reveal a much faster (∼2 ns) excited state relaxation, possibly due to multiple low-lying S1/S0 conical intersections of prefulvenic character. While meta-MA may not be an ideal sunscreen ingredient due to a low ultraviolet absorbance, its comparatively efficient relaxation mechanism may constitute an alternative to common sunscreen relaxation pathways. Thus, our results should prompt further studies of prefulvenic relaxation pathways in potential sunscreen agents

    Dense stellar clump formation driven by strong quasar winds in the FIRE cosmological hydrodynamic simulations

    Full text link
    We investigate the formation of dense stellar clumps in a suite of high-resolution cosmological zoom-in simulations of a massive, star forming galaxy at z∼2z \sim 2 under the presence of strong quasar winds. Our simulations include multi-phase ISM physics from the Feedback In Realistic Environments (FIRE) project and a novel implementation of hyper-refined accretion disk winds. We show that powerful quasar winds can have a global negative impact on galaxy growth while in the strongest cases triggering the formation of an off-center clump with stellar mass M⋆∼107 M⊙{\rm M}_{\star}\sim 10^{7}\,{\rm M}_{\odot}, effective radius R1/2 Clump∼20 pc{\rm R}_{\rm 1/2\,\rm Clump}\sim 20\,{\rm pc}, and surface density Σ⋆∼104 M⊙ pc−2\Sigma_{\star} \sim 10^{4}\,{\rm M}_{\odot}\,{\rm pc}^{-2}. The clump progenitor gas cloud is originally not star-forming, but strong ram pressure gradients driven by the quasar winds (orders of magnitude stronger than experienced in the absence of winds) lead to rapid compression and subsequent conversion of gas into stars at densities much higher than the average density of star-forming gas. The AGN-triggered star-forming clump reaches SFR∼50 M⊙ yr−1{\rm SFR} \sim 50\,{\rm M}_{\odot}\,{\rm yr}^{-1} and ΣSFR∼104 M⊙ yr−1 kpc−2\Sigma_{\rm SFR} \sim 10^{4}\,{\rm M}_{\odot}\,{\rm yr}^{-1}\,{\rm kpc}^{-2}, converting most of the progenitor gas cloud into stars in ∼\sim2\,Myr, significantly faster than its initial free-fall time and with stellar feedback unable to stop star formation. In contrast, the same gas cloud in the absence of quasar winds forms stars over a much longer period of time (∼\sim35\,Myr), at lower densities, and losing spatial coherency. The presence of young, ultra-dense, gravitationally bound stellar clumps in recently quenched galaxies could thus indicate local positive feedback acting alongside the strong negative impact of powerful quasar winds, providing a plausible formation scenario for globular clusters.Comment: 14 pages, 12 figure

    Dense stellar clump formation driven by strong quasar winds in the FIRE cosmological hydrodynamic simulations

    Get PDF
    We investigate the formation of dense stellar clumps in a suite of high-resolution cosmological zoom-in simulations of a massive, star-forming galaxy at z ∼ 2 under the presence of strong quasar winds. Our simulations include multiphase ISM physics from the Feedback In Realistic Environments (FIRE) project and a no v el implementation of hyper-refined accretion disc winds. We show that powerful quasar winds can have a global negative impact on galaxy growth while in the strongest cases triggering the formation of an off-centre clump with stellar mass M ∼ 10 7 M , effective radius R 1 / 2 Clump ∼ 20 pc , and surface density ∼10 4 M pc −2 . The clump progenitor gas cloud is originally not star -forming, b ut strong ram pressure gradients driven by the quasar winds (orders of magnitude stronger than experienced in the absence of winds) lead to rapid compression and subsequent conversion of gas into stars at densities much higher than the average density of star-forming gas. The AGN-triggered star-forming clump reaches SFR ∼ 50 M yr −1 and SFR ∼ 10 4 M yr −1 kpc −2 , converting most of the progenitor gas cloud into stars in ∼2 Myr, significantly faster than its initial free-fall time and with stellar feedback unable to stop star formation. In contrast, the same gas cloud in the absence of quasar winds forms stars over a much longer period of time ( ∼35 Myr), at lower densities, and losing spatial coherency. The presence of young, ultra-dense, gravitationally bound stellar clumps in recently quenched galaxies could thus indicate local positive feedback acting alongside the strong negative impact of powerful quasar winds, providing a plausible formation scenario for globular clusters

    Local positive feedback in the overall negative: the impact of quasar winds on star formation in the FIRE cosmological simulations

    Get PDF
    Negative feedback from accreting supermassive black holes is regarded as a key ingredient in suppressing star formation and quenching massive galaxies. However, several models and observations suggest that black hole feedback may have a positive effect, triggering star formation by compressing interstellar medium gas to higher densities. We investigate the dual role of black hole feedback using cosmological hydrodynamic simulations from the Feedback In Realistic Environments (FIRE) project, including a novel implementation of hyper-refined accretion-disc winds. Focusing on a massive, star-forming galaxy at z∼2z \sim 2 (Mhalo∼1012.5 M⊙M_{\rm halo} \sim 10^{12.5} \, {\rm M}_{\odot}), we show that strong quasar winds with kinetic power ∼\sim1046^{46} erg/s acting for >>20 \,Myr drive the formation of a central gas cavity and can dramatically reduce the star formation rate surface density across the galaxy disc. The suppression of star formation is primarily driven by reducing the amount of gas that can become star-forming, compared to directly evacuating the pre-existing star-forming gas reservoir (preventive feedback dominates over ejective feedback). Despite the global negative impact of quasar winds, we identify several plausible signatures of local positive feedback, including: (1) spatial anti-correlation of wind-dominated regions and star-forming clumps, (2) higher local star formation efficiency in compressed gas near the edge of the cavity, and (3) increased local contribution of outflowing material to star formation. Stars forming under the presence of quasar winds tend to do so at larger radial distances. Our results suggest that positive and negative AGN feedback can coexist in galaxies, but local positive triggering of star formation plays a minor role in global galaxy growth.Comment: 17 pages, 12 figure

    158 μm emission as an indicator of galaxy star formation rate

    Get PDF
    Observations of local star-forming galaxies (SFGs) show a tight correlation between their singly ionized carbon line luminosity () and star formation rate (SFR), suggesting that may be a useful SFR tracer for galaxies. Some other galaxy populations, however, are found to have lower than local SFGs, including the infrared (IR)-luminous, starburst galaxies at low and high redshifts as well as some moderately SFGs at the epoch of re-ionization (EoR). The origins of this ' deficit' is unclear. In this work, we study the -SFR relation of galaxies using a sample of z = 0-8 galaxies with extracted from cosmological volume and zoom-in simulations from the Feedback in Realistic Environments (fire) project. We find a simple analytic expression for /SFR of galaxies in terms of the following parameters: mass fraction of -emitting gas (Zgas), gas metallicity (Zgas), gas density (ngas), and gas depletion time (). We find two distinct physical regimes: -rich galaxies, where tdep is the main driver of the deficit and -poor galaxies where Zgas is the main driver. The observed deficit of IR-luminous galaxies and early EoR galaxies, corresponding to the two different regimes, is due to short gas depletion time and low gas metallicity, respectively. Our result indicates that the deficit is a common phenomenon of galaxies, and caution needs to be taken when applying a constant -to-SFR conversion factor derived from local SFGs to estimate cosmic SFR density at high redshifts and interpret data from upcoming line intensity mapping experiments

    Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies

    Get PDF
    Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question by using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disc galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyse how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the mid-plane. Bulk flows (e.g. inflows and fountains) are important at a few disc scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total mid-plane pressure is well-predicted by the weight of the disc gas and we show that it also scales linearly with the star formation rate surface density (ΣSFR). These results support the notion that the Kennicutt-Schmidt relation arises because ΣSFR and the gas surface density (Σg) are connected via the ISM mid-plane pressure

    Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies

    Get PDF
    Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question by using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disc galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyse how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the mid-plane. Bulk flows (e.g. inflows and fountains) are important at a few disc scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total mid-plane pressure is well-predicted by the weight of the disc gas and we show that it also scales linearly with the star formation rate surface density (Σ_(SFR)). These results support the notion that the Kennicutt–Schmidt relation arises because Σ_(SFR) and the gas surface density (Σ_g) are connected via the ISM mid-plane pressure

    Subhalo destruction in the Apostle and Auriga simulations

    Get PDF
    N-body simulations make unambiguous predictions for the abundance of substructures within dark matter haloes. However, the inclusion of baryons in the simulations changes the picture because processes associated with the presence of a large galaxy in the halo can destroy subhaloes and substantially alter the mass function and velocity distribution of subhaloes. We compare the effect of galaxy formation on subhalo populations in two state-of-the-art sets of hydrodynamical ∧cold dark matter (∧CDM) simulations of Milky Way mass haloes, APOSTLE and AURIGA. We introduce a new method for tracking the orbits of subhaloes between simulation snapshots that gives accurate results down to a few kiloparsecs from the centre of the halo. Relative to a dark matter-only simulation, the abundance of subhaloes in APOSTLE is reduced by 50 per cent near the centre and by 10 per cent within r200. InAURIGA, the corresponding numbers are 80 per cent and 40 per cent. The velocity distributions of subhaloes are also affected by the presence of the galaxy, much more so in AURIGA than in APOSTLE. The differences on subhalo properties in the two simulations can be traced back to the mass of the central galaxies, which in AURIGA are typically twice as massive as those in APOSTLE. We show that some of the results from previous studies are inaccurate due to systematic errors in the modelling of subhalo orbits near the centre of haloes

    The effects of integrated care: a systematic review of UK and international evidence

    Get PDF
    BACKGROUND: Healthcare systems around the world have been responding to the demand for better integrated models of service delivery. However, there is a need for further clarity regarding the effects of these new models of integration, and exploration regarding whether models introduced in other care systems may achieve similar outcomes in a UK national health service context. METHODS: The study aimed to carry out a systematic review of the effects of integration or co-ordination between healthcare services, or between health and social care on service delivery outcomes including effectiveness, efficiency and quality of care. Electronic databases including MEDLINE; Embase; PsycINFO; CINAHL; Science and Social Science Citation Indices; and the Cochrane Library were searched for relevant literature published between 2006 to March 2017. Online sources were searched for UK grey literature, and citation searching, and manual reference list screening were also carried out. Quantitative primary studies and systematic reviews, reporting actual or perceived effects on service delivery following the introduction of models of integration or co-ordination, in healthcare or health and social care settings in developed countries were eligible for inclusion. Strength of evidence for each outcome reported was analysed and synthesised using a four point comparative rating system of stronger, weaker, inconsistent or limited evidence. RESULTS: One hundred sixty seven studies were eligible for inclusion. Analysis indicated evidence of perceived improved quality of care, evidence of increased patient satisfaction, and evidence of improved access to care. Evidence was rated as either inconsistent or limited regarding all other outcomes reported, including system-wide impacts on primary care, secondary care, and health care costs. There were limited differences between outcomes reported by UK and international studies, and overall the literature had a limited consideration of effects on service users. CONCLUSIONS: Models of integrated care may enhance patient satisfaction, increase perceived quality of care, and enable access to services, although the evidence for other outcomes including service costs remains unclear. Indications of improved access may have important implications for services struggling to cope with increasing demand. TRIAL REGISTRATION: Prospero registration number: 42016037725
    • …
    corecore