6,865 research outputs found
A disk-wind model with correct crossing of all MHD critical surfaces
The classical Blandford & Payne (1982) model for the magnetocentrifugal
acceleration and collimation of a disk-wind is revisited and refined. In the
original model, the gas is cold and the solution is everywhere subfast
magnetosonic. In the present model the plasma has a finite temperature and the
self-consistent solution of the MHD equations starts with a subslow
magnetosonic speed which subsequently crosses all critical points, at the slow
magnetosonic, Alfven and fast magnetosonic separatrix surfaces. The superfast
magnetosonic solution thus satisfies MHD causality. Downstream of the fast
magnetosonic critical point the poloidal streamlines overfocus towards the axis
and the solution is terminated. The validity of the model to disk winds
associated with young stellar objects is briefly discussed. ~Comment: 13 pages, MNRAS accepted for publicatio
Are Radio Pulsars Strange Stars ?
A remarkably precise observational relation for pulse core component widths
of radio pulsars is used to derive stringent limits on pulsar radii, strongly
indicating that pulsars are strange stars rather than neutron stars. This is
achieved by inclusion of general relativistic effects due to the pulsar mass on
the size of the emission region needed to explain the observed pulse widths,
which constrain the pulsar masses to be less than 2.5 Solar masses and radii to
be smaller than 10.5 km.Comment: v.2 : 12 pages including 3 figures and 2 tables, LaTex, uses epsfig.
This version has one extra figure, few lines of new text and typos fixe
The chiral phase transition in charge ordered 1T-TiSe2
It was recently discovered that the low temperature, charge ordered phase of
1T-TiSe2 has a chiral character. This unexpected chirality in a system
described by a scalar order parameter could be explained in a model where the
emergence of relative phase shifts between three charge density wave components
breaks the inversion symmetry of the lattice. Here, we present experimental
evidence for the sequence of phase transitions predicted by that theory, going
from disorder to non-chiral and finally to chiral charge order. Employing X-ray
diffraction, specific heat, and electrical transport measurements, we find that
a novel phase transition occurs ~7 K below the main charge ordering transition
in TiSe2, in agreement with the predicted hierarchy of charge ordered phases.Comment: 5 pages, 3 figures; includes additional experimental and theoretical
results; fixed typo
Bidirectionally Deformable Motion Modulation For Video-based Human Pose Transfer
Video-based human pose transfer is a video-to-video generation task that
animates a plain source human image based on a series of target human poses.
Considering the difficulties in transferring highly structural patterns on the
garments and discontinuous poses, existing methods often generate
unsatisfactory results such as distorted textures and flickering artifacts. To
address these issues, we propose a novel Deformable Motion Modulation (DMM)
that utilizes geometric kernel offset with adaptive weight modulation to
simultaneously perform feature alignment and style transfer. Different from
normal style modulation used in style transfer, the proposed modulation
mechanism adaptively reconstructs smoothed frames from style codes according to
the object shape through an irregular receptive field of view. To enhance the
spatio-temporal consistency, we leverage bidirectional propagation to extract
the hidden motion information from a warped image sequence generated by noisy
poses. The proposed feature propagation significantly enhances the motion
prediction ability by forward and backward propagation. Both quantitative and
qualitative experimental results demonstrate superiority over the
state-of-the-arts in terms of image fidelity and visual continuity. The source
code is publicly available at github.com/rocketappslab/bdmm.Comment: ICCV 202
The noise properties of stochastic processes and entropy production
Based on a Fokker-Planck description of external Ornstein-Uhlenbeck noise and
cross-correlated noise processes driving a dynamical system we examine the
interplay of the properties of noise processes and the dissipative
characteristic of the dynamical system in the steady state entropy production
and flux. Our analysis is illustrated with appropriate examples.Comment: RevTex, 1 figure, To appear in Phys. Rev.
Unification, KK-thresholds and the top Yukawa coupling in F-theory GUTs
In a class of F-theory SU(5) GUTs the low energy chiral mass spectrum is
obtained from rank one fermion mass textures with a hierarchical structure
organised by U(1) symmetries embedded in the exceptional E_8 group. In these
theories chiral fields reside on matter `curves' and the tree level masses are
computed from integrals of overlapping wavefuctions of the particles at the
triple intersection points. This calculation requires knowledge of the exact
form of the wavefuctions. In this work we propose a way to obtain a reliable
estimate of the various quantities which determine the strength of the Yukawa
couplings. We use previous analysis of KK threshold effects to determine the
(ratios of) heavy mass scales of the theory which are involved in the
normalization of the wave functions. We consider similar effects from the
chiral spectrum of these models and discuss possible constraints on the
emerging matter content. In this approach, we find that the Yukawa couplings
can be determined solely from the U(1) charges of the states in the
`intersection' and the torsion which is a topological invariant quantity. We
apply the results to a viable SU(5) model with minimal spectrum which satisfies
all the constraints imposed by our analysis. We use renormalization group
analysis to estimate the top and bottom masses and find that they are in
agreement with the experimental values.Comment: 28 pages, 2 figure
Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures
This study investigates the strong photoluminescence (PL) and X-ray excited
optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes
(GNFs:N), which arise from the significantly enhanced density of states in the
region of {\pi} states and the gap between {\pi} and {\pi}* states. The
increase in the number of the sp2 clusters in the form of pyridine-like N-C,
graphite-N-like, and the C=O bonding and the resonant energy transfer from the
N and O atoms to the sp2 clusters were found to be responsible for the blue
shift and the enhancement of the main PL emission feature. The enhanced PL is
strongly related to the induced changes of the electronic structures and
bonding properties, which were revealed by the X-ray absorption near-edge
structure, X-ray emission spectroscopy, and resonance inelastic X-ray
scattering. The study demonstrates that PL emission can be tailored through
appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way
for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure
LOFAR discovery of the fastest-spinning millisecond pulsar in the Galactic field
We report the discovery of PSR J09520607, a 707-Hz binary millisecond
pulsar which is now the fastest-spinning neutron star known in the Galactic
field (i.e., outside of a globular cluster). PSR J09520607 was found using
LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3
GHz frequencies typically used in pulsar searches. The discovery is part of an
ongoing LOFAR survey targeting unassociated Fermi Large Area Telescope
-ray sources. PSR J09520607 is in a 6.42-hr orbit around a very
low-mass companion ( M) and we identify a
strongly variable optical source, modulated at the orbital period of the
pulsar, as the binary companion. The light curve of the companion varies by 1.6
mag from at maximum to , indicating that it is
irradiated by the pulsar wind. Swift observations place a 3- upper
limit on the keV X-ray luminosity of erg
s (using the 0.97 kpc distance inferred from the dispersion measure).
Though no eclipses of the radio pulsar are observed, the properties of the
system classify it as a black widow binary. The radio pulsed spectrum of PSR
J09520607, as determined through flux density measurements at 150 and 350
MHz, is extremely steep with (where ).
We discuss the growing evidence that the fastest-spinning radio pulsars have
exceptionally steep radio spectra, as well as the prospects for finding more
sources like PSR J09520607.Comment: 9 pages, 3 figures, 1 table, published in ApJ letter
SISTEM MONITORING MENGGUNAKAN KAMERA IP
RIFKI YUSUF SETIAWAN, 2010, SYSTEM MONITORING USING IP
CAMERA. 3rd Diploma Program Computer Science, Faculty of Mathematics and
Natural Science, Sebelas Maret University of Surakarta.
The level of criminality was quite high, pushed the existence of the
production of the monitoring system which gave the more effective safety.The
main aim of this final report is to investigate the way of designing and developing
program to monitor a room by using IP camera.
The data were collected though experiment, observation, and library
research. This study revealed that IP Camera was capable of monitoring room
automatically and the software to manage the displayed was created by delphi 7 .
Based on the findings, it could be concluded that we could monitor a
room with IP camera.
Keyword : IP camera, security, delphi 7, monitorin
Flexible Parylene-based Microelectrode Technology for Intraocular Retinal Prostheses
We present the first single metal layer flexible microelectrode arrays designed for intraocular implantation that utilize parylene C as their primary structural and insulating material. These electrodes are fabricated as a key component of an intraocular retinal prosthesis comprising a radio-frequency coil for power and data transfer, a packaged high lead-count telemetry-recovery and driving application-specific integrated circuit (ASIC), and a high-density epiretinal stimulating microelectrode array for the treatment of retinal degenerative blindness in humans. Electrochemical tests have demonstrated that these thin-film platinum electrodes perform as necessary for neuronal stimulation. A novel bioconformal MEMS geometry for a complete intraocular system with capsular retaining-wings that enables all the components of the system to be implanted and retained within the lens capsule and vitreous cavity of the eye is also presented. The efficacy of this geometry when compared with a previous model without capsular retaining-wings has been verified by surgical implantation in animal models
- …