83 research outputs found

    Model-based pre-ignition diagnostics in a race car application

    Get PDF
    Since 2014, Formula 1 engines have been turbocharged spark-ignited engines. In this scenario, the maximum engine power available in full-load conditions can be achieved only by optimizing combustion phasing within the cycle, i.e., by advancing the center of combustion until the limit established by the occurrence of abnormal combustion. High in-cylinder pressure peaks and the possible occurrence of knocking combustion significantly increase the heat transfer to the walls and might generate hot spots inside the combustion chamber. This work presents a methodology suitable to properly diagnose and control the occurrence of pre-ignition events that emanate from hot spots. The methodology is based on a control-oriented model of the ignition delay, which is compared to the actual ignition delay calculated from the real-time processing of the in-cylinder pressure trace. When the measured ignition delay becomes significantly smaller than that modeled, it means that ignition has been activated by a hot spot instead of the spark plug. In this case, the presented approach, implemented in the electronic control unit (ECU) that manages the whole hybrid power unit, detects a pre-ignition event and corrects the injection pattern to avoid the occurrence of further abnormal combustion

    The role of environmental conditions in regulating long-term dynamics of an invasive seaweed

    Get PDF
    The mechanisms underpinning long-term dynamics and viability of invader populations in the receiving environment remain largely unknown. We tested the hypothesis that temporal variations in the abundance of a well-established invasive seaweed, Caulerpa cylindracea, in the NW Mediterranean, could be regulated by inter-annual fluctuations in environmental conditions. Abundance data of C. cylindracea, sampled repeatedly between 2005 and 2020 at the peak of its growing season (late summer/early fall), were related to interannual variations in seasonal seawater temperature, wind speed and rainfall recorded during different growth phases of the alga, in both subtidal and intertidal habitats. In both habitats, higher peak of C. cylindracea cover was associated with lower seawater temperature in spring and summer, when the seaweed exits the winter resting phase and starts a period of active growth. In addition, the peak abundance of subtidal C. cylindracea was positively associated with higher autumn wind speed intensity and spring daily total precipitation. Our study reveals the importance of seasonal and interannual variation of abiotic factors in shaping temporal patterns of abundance of C. cylindracea, in both subtidal and intertidal habitats. Identifying the factors underpinning invasive population temporal dynamics and viability is essential to predict the time and conditions under which an invader can thrive, and thus guide management strategies aimed to containing invasions under current and future climates

    automatic calibration of control parameters based on merit function spectral analysis

    Get PDF
    Abstract The number of actuations influencing the combustion is increasing, and, as a consequence, the calibration of control parameters is becoming challenging. One of the most effective factors influencing performance and efficiency is the combustion phasing: for gasoline engines control variables such as Spark Advance (SA), Air-to-Fuel Ratio (AFR), Variable Valve Timing (VVT), Exhaust Gas Recirculation (EGR) are mostly used to set the combustion phasing. The optimal control setting can be chosen according to a cost function, taking into account performance indicators, such as Indicated Mean Effective Pressure (IMEP), Brake Specific Fuel Consumption (BSFC), pollutant emissions, or other indexes inherent to reliability issues, such as exhaust gas temperature, or knock intensity. The paper proposes the use of the extremum seeking approach during the calibration process. The main idea consists in changing the values of each control parameter at the same time, identifying its effect on the monitored cost function, allowing to shift automatically the control setting towards the optimum solution throughout the calibration procedure. Obviously, the nodal point is to establish how the various control parameters affect the monitored cost function and to determine the direction of the required variation, in order to approach the optimum. This task is carried out by means of a spectral analysis of the cost function: each control variable is varied according to a sine wave, thus its effect on the cost function can be determined by evaluating the amplitude of the Fast Fourier Transform (FFT) of the cost function, for the given excitation frequency. The FFT amplitude is representative of the cost function sensitivity to the control variable variations, while the phase can be used to assess the direction of the variation that must be applied to the control settings in order to approach the optimum configuration. Each control parameter is excited with a different frequency, thus it is possible to recognize the effect of a single parameter by analyzing the spectrum of the cost function for the given excitation frequency. The methodology has been applied to data referring to a PFI engine, trying to maximize IMEP, while limiting the knock intensity and exhaust gas temperature, using SA and AFR as control variables. The approach proved to be efficient in reaching the optimum control setting, showing that the optimal setting can be achieved rapidly and consistently

    Contrasting the beam interaction characteristics of selected lasers with a partially stabilised zirconia (PSZ) bio-ceramic

    Get PDF
    Differences in the beam interaction characteristics of a CO2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilised zirconia (PSZ) bio-ceramic have been studied. A derivative of Beer-Lambert’s law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55 x 10-3 cm for the CO2 laser, 18.22 x 10-3 cm for the Nd:YAG laser, 17.17 x 10-3 cm for the HPDL and 8.41 x 10-6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J/cm2, 97 J/cm2, 115 J/cm2 and 0.48 J/cm2 respectively. The thermal loading value for the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ/cm3, 5.32 kJ/cm3, 6.69 kJ/cm3 and 57.04 kJ/cm3 respectively

    Ocean acidification and hypoxia alter organic carbon fluxes in marine soft sediments

    Get PDF
    Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (13C) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (13C), previously exposed to elevated CO2, were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2. At elevated CO2, infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short‐term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft‐sediment systems

    Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences.</p> <p>Results</p> <p>Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite <it>de novo </it>transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled <it>de novo </it>from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including <it>extracellular matrix</it>, <it>cartilage development</it>, <it>contractile fiber</it>, and <it>chemokine activity</it>.</p> <p>Conclusions</p> <p>Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.</p

    Bone turnover markers in sheep and goat: a review of the scientific literature

    Get PDF
    Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for his PhD scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio

    Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas

    Get PDF
    Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal inverte�brates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (debor�ealization, 18%). Tropicalization dominated Atlantic sites compared to semi�enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi�enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization

    Post-mortem volatiles of vertebrate tissue

    Get PDF
    Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted
    corecore