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1  | INTRODUC TION

Marine sediments are key for the accumulation and burial of or‐
ganic matter (Berner, 1982; Smith, Bianchi, Allison, Savage, & 
Galy, 2015). The input of organic detritus from the water column 
is one of the main sources of carbon to resident burrowing fauna, 
mediators of benthic pelagic exchange processes that in turn de‐
termine the fate of organic matter at the global scale (Middelburg, 

2018; Snelgrove et al., 2018). These processes include direct met‐
abolic carbon uptake and mineralization (Woulds et al., 2016), par‐
ticle reworking and burrowing ventilation, which affect detritus 
availability to other biota (Kristensen et al., 2012; Snelgrove et al., 
2018). Anthropogenic stressors, including global warming, ocean 
acidification (OA) and oxygen depletion, impact the structure and 
functioning of these communities, having thus the power to in‐
fluence benthic–pelagic carbon fluxes (Godbold & Solan, 2013; 
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Abstract
Anthropogenic stressors can alter the structure and functioning of infaunal communities, 
which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, 
the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic 
systems remain largely unknown. Here, we investigated the cumulative effects of 
ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, 
through a mesocosm experiment. Isotopically labelled macroalgal detritus (13C) was 
used as a tracer to assess carbon incorporation in faunal tissue and in sediments 
under different experimental conditions. In addition, labelled macroalgae (13C), pre‐
viously exposed to elevated CO2, were also used to assess the organic carbon up‐
take by fauna and sediments, when both sources and consumers were exposed to 
elevated CO2. At elevated CO2, infauna increased the uptake of carbon, likely as com‐
pensatory response to the higher energetic costs faced under adverse environmental 
conditions. By contrast, there was no increase in carbon uptake by fauna exposed to 
both stressors in combination, indicating that even a short‐term hypoxic event may 
weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In 
addition, both hypoxia and elevated CO2 increased organic carbon burial in the sedi‐
ment, potentially affecting sediment biogeochemical processes. Since hypoxia and 
OA are predicted to increase in the face of climate change, our results suggest that 
local reduction of hypoxic events may mitigate the impacts of global climate change 
on marine soft‐sediment systems.
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Laverock et al., 2013; Widdicombe et al., 2009). However, the 
influence of anthropogenic stressors on marine sediment carbon 
cycling remains largely unquantified (Keil, 2017).

Hypoxia (defined as oxygen concentration ≤2 ml of O2/L; Diaz 
& Rosenberg, 2008) has increased in many coastal areas worldwide, 
as a consequence of both natural and anthropogenic influences 
(Breitburg et al., 2018; Levin, 2018; Schmidtko, Stramma, & Visbeck, 
2017; Vaquer‐Sunyer & Duarte, 2008). Among anthropogenic stress‐
ors, eutrophication is one of the main drivers of coastal hypoxia. 
Enhanced nutrient loading to seawater stimulates algal biomass 
accumulation and the subsequent microbial degradation of organic 
matter to the seabed lowers oxygen levels (Reed & Harrison, 2016; 
Steckbauer, Duarte, Carstensen, Vaquer‐Sunyer, & Conley, 2011). 
The intensity, duration and frequency of hypoxic events are ex‐
pected to increase because of global warming, which is reducing O2 
solubility, whilst increasing primary production, thermally induced 
stratification and biotic respiration (Keeling, Körtzinger, & Gruber, 
2010; Schmidtko et al., 2017). In addition to this chronic reduction 
in oxygen availability, acute sporadic oxygen depletion events can 
occur near the coastal seabed, following periods of intense autotro‐
phic growth in surface waters, which are followed by fast, intense 
deposition of decaying phyto‐ and zooplankton on the sediment sur‐
face (Tait et al., 2015; Zhang et al., 2015). The effects of hypoxia on 
benthic community structure and functioning are well known (Levin 
et al., 2009; Middelburg & Levin, 2009; Zhang et al., 2010). For in‐
stance, hypoxia can result in shallower infaunal activity within the 
sediment (Riedel et al., 2014), metabolic depression and, over time, 
decreased body size (Diaz & Rosenberg, 1995), ultimately altering 
sediment biogeochemistry (Middelburg & Levin, 2009). Hypoxia can 
also restrict macrofaunal burrowing activity to superficial sediment 
layers, thus reducing the vertical, downward transport of material 
and increasing the proportion of organic matter degradation that oc‐
curs near the sediment surface (Middelburg & Levin, 2009). Finally, 
lower levels of aerobic respiration slow down carbon mineraliza‐
tion (Jessen et al., 2017; Woulds, Andersson, Cowie, Middelburg, & 
Levin, 2009; Woulds et al., 2007).

In addition to hypoxia, increased anthropogenic CO2 emissions 
are driving up levels of atmospheric CO2, which in turn increases the 
rate of oceanic CO2 uptake. Once dissolved in the surface ocean, this 
CO2 drives a series of changes and reactions in the marine carbonate 
system and these chemical changes are collectively known as OA 
(Doney, Fabry, Feely, & Kleypas, 2009). Under the current rate of 
CO2 emission, seawater CO2 concentrations are expected to increase 
from ~385 to ~700–1,000 ppm by the end of the century, based on 
the fifth IPCC Assessment Report's Representative Concentration 
Pathway (RCP) 8.5 (Riahi et al., 2011; Stocker et al., 2013). In addi‐
tion, in coastal hypoxic regions, with a strong vertical stratification 
and high nutrient loadings, levels of seawater CO2 already exceed 
those predicted by the end of the century (pCO2  >  1,000  µatm), 
as heterotrophic degradation of organic matter increases meta‐
bolic CO2 release because of respiratory processes (Cai et al., 2011; 
Melzner et al., 2012). Thus, much higher CO2 values are expected 
to occur concomitantly with hypoxia in many shelf and estuarine 

regions worldwide, as a consequence of climate change (e.g. warm‐
ing and OA; Breitburg et al., 2018; Carstensen & Duarte, 2019).

The potential for elevated CO2 to negatively impact a wide vari‐
ety of marine organisms and biological processes is well documented 
(Gaylord et al., 2015; Kroeker et al., 2013; Sunday et al., 2016; Vargas 
et al., 2017). However, the impacts of elevated CO2 on the struc‐
ture and functioning of soft‐sediment ecosystems remain less un‐
derstood (Godbold & Solan, 2013; Keil, 2017; Laverock et al., 2013). 
Although elevated CO2 does not always cause mortality to infau‐
nal species, a trade‐off between the maintenance of core activities 
(e.g. respiration and growth) and locomotion, tightly linked to fauna 
particle transport (Queirós et al., 2013), might be expected, result‐
ing from the allocation of additional energy (i.e. ATP) to physiolog‐
ical stress response pathways (Pan, Applebaum, & Manahan, 2015; 
Widdicombe & Spicer, 2008; Wood, Spicer, & Widdicombe, 2008). In 
addition, elevated CO2 can indirectly alter the relationship between 
consumers and organic matter sources, modifying the nutritional 
quality of food (i.e. higher C:N ratio), thus affecting carbon uptake 
(Duarte et al., 2016; Kamya, Byrne, Mos, Hall, & Dworjanyn, 2017; 
Poore et al., 2013; Rossoll et al., 2012).

Enhanced CO2 concentration in seawater can further alter sed‐
imentary carbon cycling in marine sediments through changes in 
primary production and respiration (Engel et al., 2013; Molari et al., 
2018; Piontek et al., 2013; Riebesell et al., 2007). Elevated CO2 may 
stimulate primary production (Engel et al., 2013), but reduce organic 
carbon remineralization due to changes in C:N ratio (Riebesell et al., 
2007), potentially enhancing organic carbon sequestration in sed‐
iments. Elevated CO2 may reduce carbon burial through the stim‐
ulation of organic matter microbial degradation (Grossart, Allgaier, 
Passow, & Riebesell, 2006; Piontek et al., 2013) and faunal respira‐
tion (Molari et al., 2018). These contrasting effects of elevated CO2 
on bulk organic carbon may be the result of complex pathways of 
impacts on benthic communities and carbon sediment stores, poten‐
tially resulting in cumulative neutral impacts and challenging predic‐
tive frameworks (Zark, Riebesell, & Dittmar, 2015).

Although coastal areas with low O2 and elevated CO2 have been 
largely documented worldwide and will continue to increase under 
future climate conditions (Melzner et al., 2012), the vast majority of 
studies have focused on the effects of these stressors in isolation. A 
few recent studies that have examined hypoxia and elevated CO2 to‐
gether have reported either additive or synergistic effects of hypoxia 
and elevated CO2 on the survivorship, development and growth of 
different species of marine invertebrates (Gobler & Baumann, 2016; 
Gobler, Depasquale, Griffith, & Baumann, 2014; Steckbauer et al., 
2015). However, to date, no study has investigated the effects of 
both stressors simultaneously on infaunal communities and the car‐
bon fluxes they mediate.

Here, using a 4 week mesocosm study, we investigated the com‐
pound effects of hypoxia and elevated CO2 on the fluxes of organic 
carbon in soft sediments, considering faunal‐driven benthic–pe‐
lagic processes. Using isotopically labelled macroalgal detritus (13C), 
a common source of organic matter supplied to the coastal ocean 
(Krause‐Jensen & Duarte, 2016; Queirós et al., 2019), we traced 
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organic carbon uptake of a pulsed supply into sedimentary faunal 
tissues and organic carbon stores under different oxygen availability 
and CO2 levels. We predicted that the combined effects of elevated 
CO2 and hypoxia could significantly reduce the faunal uptake of algal 
detritus, by causing metabolic depression in marine invertebrates 
(Levin et al., 2009; Widdicombe et al., 2009). Alternatively, elevated 
CO2 could increase resource uptake by fauna (Queirós et al., 2015; 
Thomsen, Casties, Pansch, Kortzinger, & Melzner, 2013), due to in‐
creasing energetic demands associated with physiological responses 
under OA (e.g. protein synthesis, pH homoeostasis, calcification; Pan 
et al., 2015; Ramajo, Pérez‐León, et al., 2016; Stumpp et al., 2012), 
thus counteracting the negative effects of hypoxia on feeding ac‐
tivities. In addition, the increase in sediment carbon incorporation 
expected under hypoxic conditions (Jessen et al., 2017) could be 
dampened by elevated CO2, possibly stimulating microbial degrada‐
tion of algal detritus (Grossart et al., 2006; Piontek et al., 2013).

Moreover, in order to assess whether OA could alter organic 
carbon cycling directly (e.g. metabolic processes) or indirectly (e.g. 
modification of food quality), we carried out an independent exper‐
iment, where isotopically labelled macroalgae (13C), pre‐exposed to 
elevated CO2 for 10 days, were used as a tracer to assess the organic 
carbon uptake by fauna and sediments, when both sources and con‐
sumers were exposed to OA. Elevated CO2 could increase the C:N 
ratio of algal detritus (Mercado, Javier, Gordillo, Niell, & Figueroa, 
1999; Stiling & Cornelissen, 2007), possibly resulting either in a de‐
crease of carbon uptake by fauna, due to lower organic matter palat‐
ability (Duarte, Navarro, Acuña, & Gómez, 2010; Kamya et al., 2017), 
or in increased consumption of less nutritional food; Cruz‐Rivera & 
Hay, 2001; Duarte, Acuña, Navarro, & Gómez, 2011). An increase in 
C:N ratio of algal detritus under elevated CO2 condition could also 
increase the organic carbon burial in the sediment, possibly due to 
lower organic matter remineralization (Riebesell et al., 2007).

2  | MATERIAL S AND METHODS

2.1 | Sediment and macroalgal collection and 
preparation

Sediments were collected on board of the Plymouth Marine 
Laboratory's RV Quest, at Station L4 (50°13′22.7″N, 4°11′23″W, 
also known as Hilmar's Box), located about 13  km southwest of 
Plymouth, in the Western English Channel. L4 is one of the most 
comprehensively studied coastal systems in the world, having 
been monitored routinely for over 100  years, generating a wide 
range of environmental and biological benthic–pelagic observa‐
tions which are used, for example, by the European Union's Water 
Framework Directive (Smyth et al., 2015). The site is representative 
of the vast majority of shelf environments around the world and, 
at present, neither hypoxia nor acidification is a regular occurrence 
in this system (publicly available data at http://www.weste​rncha​
nnelo​bserv​atory.org.uk, not shown). Phytoplankton blooms at L4 
are generally observed in spring and autumn, representing the main 
source of organic supply, together with macroalgal detritus, at the 

seabed (Queirós et al., 2019; Smyth et al., 2015; Widdicombe, Eloire, 
Harbour, Harris, & Somerfield, 2010). During summer months, this 
site is generally characterized by thermal stratification and inorganic 
nutrient depletion in the surface water, suggesting N‐limitation of 
primary production (Smyth et al., 2015). The seawater pCO2 at the 
seabed has been shown to vary between 351 and 432 µatm, with a 
pH value always above 8.0 throughout the year (Kitidis et al., 2012). 
This site is generally not exposed to seasonal hypoxic events. A sig‐
nificant reduction of oxygen levels below the thermocline has been 
recorded during the summer of 2012, probably due to the largest 
and long‐lasting phytoplankton bloom recorded locally over the past 
20 years (Smyth et al., 2015; Tait et al., 2015; Zhang et al., 2015).

On 16 March 2016, 22 cores were collected from the soft‐sed‐
iment bed of the benthic monitoring site of the L4 station, using six 
separate deployments of a 0.1 m2 box core, at about 50 m depth. 
Seawater temperature (~10.5°C) and dissolved oxygen (~270 µM) at 
the seabed, during sampling day, are reported in Queirós et al. (2019). 
On retrieval to the deck, sediment with resident fauna and overlying 
water were immediately subsampled from each box core by pushing 
a maximum of four acrylic core tubes (10 cm diameter × 30 cm high) 
to a depth of approximately 12  cm. This method allows the pres‐
ervation of the structural integrity of sediment in each core tube 
(Evrard et al., 2012; Queirós et al., 2019; Woulds et al., 2016), which 
is essential to maintain as much as possible ongoing sedimentary 
gradients and ecosystem processes (Stocum & Plante, 2006). The 
core tubes were equipped with oxygen sensor spots (PreSens), pre‐
viously attached to the inner wall of the cores with silicone glue, just 
above the sediment surface (see below). Each core was, then, gently 
removed from the box core and capped at the bottom with a PVC 
lid fitted with an O‐ring, further sealed by a plastic cap, which was 
glued to the core with biological grade silicon (Gold Label, Huttons 
Aquatic Products). The top of each core was sealed with an acrylic 
lid, onto which the tubing for an airstone sitting near the surface of 
the water in the core had been fitted. All cores were placed in two 
water baths containing seawater from the collected site and cov‐
ered with black plastic sheets during transport to Plymouth Marine 
Laboratory to reduce temperature changes. Once in the mesocosm 
laboratory at Plymouth Marine Laboratory, the core tubes were ran‐
domly allocated to two 1 m3 mesocosm tanks. The laboratory is a 
temperature‐controlled room where air temperature is maintained 
such that aquarium water in the room follows the seasonal cycle of 
bottom water at the L4 station (Findlay, Kendall, Spicer, Turley, & 
Widdicombe, 2008; Queirós et al., 2015). The 1 m3 mesocosm tanks 
were used as water baths to ensure that base temperature and light 
(absence of) conditions experienced by each core tube were as simi‐
lar as possible during laboratory exposures, and water was not circu‐
lated between individual (microcosm) sediment cores. Water in each 
core was aerated for 24 hr prior to start the experiment by use of 
the fitted airstones, which promoted a gentle flow inside the core 
without causing resuspension.

The macroalga Laminaria digitata was used as a labelled food 
source in our experiment. Laminaria spp., together with other 
macroalgal species, have been shown to occur as organic detritus 

http://www.westernchannelobservatory.org.uk
http://www.westernchannelobservatory.org.uk
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within the sediment at L4, and they are one of the organic mat‐
ter sources preferentially assimilated by infaunal assemblages at 
the site (Queirós et al., 2019), as indeed potentially in much of the 
coastal ocean (Krause‐Jensen & Duarte, 2016). In February 2016, 
individuals of L. digitata were collected by hand from the low in‐
tertidal rocky shore at Rame Head (50°18′41.11″N, 4°13′14.89″O; 
England). All individuals were immediately transported to the 
mesocosm facility at the Plymouth Marine Laboratory, where 
they were placed in a recirculating water system tank and kept at 
ambient CO2 for approximately 10 days. The tank was lit by two 
LED strip lights, positioned at a distance of about 40 cm from the 
water surface. Algae were maintained under constant light to max‐
imize growth. Seawater was collected from the Western Channel 
Observatory during the previous week to each of the exposures 
(pH: mean ± SE = 8.09 ± 0.01; salinity: mean ± SE = 36.25 ± 0.75). 
Ten days later, some individuals of L. digitata were transferred to a 
separate tank in which conditions were otherwise the same, except 
for elevated seawater CO2 level, and held there for 2 weeks. The 
CO2 level in this tank was used to create a low pH treatment (pH 
mean ± SE = 7.75 ± 0.07) and was in line with the Intergovernmental 
Panel on Climate Change 5th Assessment Report's Representative 
Concentration Pathway (RCP) 8.5 atmospheric CO2 for the year 
2100, the scenario in which emissions are highest, and which does 
not include specific climate mitigation targets (Riahi et al., 2011; 
Stocker et al., 2013). The elevated seawater CO2, and the resul‐
tant lower pH, in this tank was achieved by using a premixed gas 
system modified from Findlay et al. (2008). Briefly, the enrichment 
was achieved by mixing pure CO2 gas with CO2‐free air using flow 
meters and mixing vessels, monitored with a CO2 analyser (820, 
Li‐Cor). The water bath with the low pH water was covered with 
sealed plastic sheets in order to insulate the tank's atmosphere 
from the laboratory atmosphere, allowing CO2 in seawater and the 
air above it to equilibrate.

Individuals of L. digitata from the two treatments were then 
transferred to two clear acrylic aquaria, filled with seawater at ei‐
ther ambient or elevated CO2 levels. The seawater in these aquaria 
contained 200% 13C‐enriched bicarbonate (98% 13C, Sigma Aldrich) 
to label algae, and allow its subsequent tracing within the sediment 
cores. The aquaria were sealed with clear acrylic lids and maintained 
under constant light and ambient temperature for 72  hr. Labelled 
algae were then rinsed with unlabelled seawater to remove adher‐
ing 13C‐bicarbonate and stored at −78°C before freeze‐drying. Algal 
detritus marked with 13C (~13.23% and 66.7%, respectively, for 
macroalgae labelled at ambient and elevated CO2 levels) was then 
ground to a fine powder using pre‐acid‐washed and muffle‐furnaced 
agate pestle and mortars before being added to the experimental 
cores (Evrard et al., 2012; Hunter, Ogle, O'connor, & El‐Sabaawi, 
2019). 13C labelling was used to enable tracing of carbon between 
source and sedimentary consumers, and the use of the same pop‐
ulation of macroalgae is also necessary because of strong varia‐
tions that occur within and across individuals, as well as different 
populations (Phillips et al., 2014). Carbon and nitrogen content in 
macroalgal tissue was analysed using an elemental analyser. C:N 

ratio in macroalgae maintained at ambient CO2 seawater was sig‐
nificantly lower than those at elevated CO2 (20.103  ±  0.37% and 
22.73 ± 0.45%, respectively; t = −4.50; p = .024, n = 2).

2.2 | Macrofauna and sediment organic carbon 
uptake experiment

The sedimentary core experiment was set up for 4  weeks to ex‐
amine the separate and cumulative effects of CO2 concentration 
[CO2] (ambient vs. elevated CO2) and oxygen concentration [O2] 
(normoxia vs. hypoxia) on faunal and sediment incorporation of la‐
belled algae, which was previously maintained at ambient CO2. Four 
replicate cores were then randomly allocated to each experimental 
treatment. Treatments were achieved by: selecting the air–CO2 mix 
bubbled in each sediment core (manipulated as before); whether or 
not a hypoxia event was simulated; which macroalagal detritus was 
added to which core. Seawater was not circulated between indi‐
vidual (microcosm) cores. Only three replicate cores were used to 
simulate control conditions (ambient CO2, normoxia), due to loss of 
one core during field sampling. Four cores were also used to test the 
effects of elevated CO2 on faunal carbon uptake using labelled algae 
that were pre‐exposed to elevated CO2. Three additional control 
cores were maintained at ambient seawater CO2, oxygen concen‐
tration and without labelled algae, and used to determine the 13C 
background content in faunal tissue and sediment (see below). Two 
CO2 treatments were established, as used with the macroalgae, to 
compare present‐day (ambient) values with those expected by the 
end of the century under RCP 8.5. pHNBS was measured every 2 days 
and the average values (±SE) for the ambient and elevated CO2 treat‐
ments were 8.17 ± 0.01 and 7.65 ± 0.02, respectively. Seawater tem‐
perature and salinity were measured every 2 days, whilst alkalinity 
samples were collected weekly from each core and measured using 
an automated titrator (Apollo SciTech Alkalinity Titrator Model AS‐
ALK2). Carbonate system parameters were calculated from meas‐
ured pH, alkalinity, temperature and salinity using CO2SYS program 
for Excel with constant from Mehrbach, Culberson, Hawley, and 
Pytkowicx (1973) and adjusted by Dickson and Millero (1987; see 
Table S1).

After 2 weeks from the start of the experiment, water mixing 
was interrupted and 0.115  ±  0.0002  g of 13C‐labelled L. digitata 
(equivalent to a C addition of ~1 g C/m2; Woulds et al., 2016) was 
added to the overlying water of each core and allowed to settle to 
the sediment surface. Correspondingly, 0.113 ± 0.0003 g of 13C‐la‐
belled algae pre‐exposed to elevated CO2 were added in four cores 
exposed to elevated CO2. Airflow was reinstated 1  hr later in all 
but the hypoxia treatment cores. In these, airflow was interrupted 
for 46 hr by sealing the lids (and their openings) to cores with sili‐
cone grease (biological grade, Gold Label). Oxygen concentration 
in the water column was measured using the oxygen sensor spots 
(PreSens) and a fibre‐optic oxygen transmitter equipped with a 
computer to collect the data. The oxygen sensors consisted of an 
oxygen‐permeable foil, in which a chemical luminescence reaction 
takes place. The photoluminescence lifetime of the luminophore 
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within the sensor was measured by pointing the fibre‐optic oxy‐
gen transmitter towards the outside of the wall in which the sensor 
was glued. Before each measurement, a two‐point calibration was 
performed in all spot sensors, following manufacturer recommen‐
dation (0% and 100%). The 0% oxygen saturation was calibrated by 
adding sodium sulphide to distilled water. Seawater was, then, aer‐
ated with ambient air and stirred for 20 min to avoid oversaturation. 
At this point, it was used in the calibration as the 100% dissolved 
oxygen solution. We used the definition of hypoxia as oxygen lev‐
els of ≤2 mg/L (Diaz & Rosenberg, 2008), which hypoxia treatment 
cores reached after 46 hr. The cores were monitored using optodes, 
so that oxygen depletion was not extreme for too long. The aver‐
age oxygen saturation of each treatment was 103.12 ± 0.545% and 
18.74 ± 3.08%, which correspond to [O2] = 10.20 ± 0.446 mg/L and 
[O2] = 1.794 ± 0.294 mg/L, respectively, for normoxia and hypoxia 
treatments.

All experiments were carried out in the dark and the incuba‐
tions were terminated after 4 weeks from the start of the exper‐
iment. The duration of the experiment was appropriate to ensure 
that isotopic signal in traced carbon could be detected in primary 
consumers, whilst reducing the changes of complexity in measured 
response variables as the labelled detritus is cycled by subsequent 
consumers within the sedimentary food web (Middelburg, 2014; 
Queirós et al., 2019).

2.3 | Sample collection and analysis

At the end of the experiment (13 April 2016), the cores were pro‐
cessed for stable isotope analyses of organic carbon content in fau‐
nal tissue and sediment. For each core, sediment was sectioned into 
0–2, 2–6 and 6–10 cm depth layers using a custom‐built sediment 
slicer. Each layer was subsampled for the analysis of 13Corg content in 
sediment, using a syringe that fitted tightly into a 50 ml falcon tube, 
and immediately frozen at −20°C until processing. The sediment re‐
maining from each layer was used for the determination of 13Corg in‐
corporation into faunal tissue. Each sediment layer was sieved over a 
0.5 mm sieve, and specimens were identified to the lowest taxonom‐
ical level possible using pre‐combusted sorting equipment and then 
frozen in pre‐weighed and pre‐combusted petri dishes at −80°C until 
processing (within 2 weeks). Sediment and fauna samples were oven‐
dried at 60°C for 48 hr. Each sample was then ground to a fine pow‐
der using agate pestle and mortars and, then, they were acidified by 
adding drops of 10% HCl, until all carbonates had been dissolved. All 
samples were oven‐dried at 60°C for 48 hr. Elemental and isotopic 
analyses of sediment and fauna samples were measured on constant 
flow isotope ratio mass spectrometers (Sercon model 20‐20's, dual 
turbo pumped, CF/IRMS) connected to a Thermo EA1110 elemental 
analyser at OEA Labs (UK).

13Corg incorporation into fauna (% 13C mg−1 m−2) and sediment (% 
13C) was then calculated as the product of the excess 13C (E) and Corg 
content in the fauna/sediment (expressed as percentage). E is the dif‐
ference between the labelled fraction (F) of fauna/sediment sample 
and background fauna/sediment sample: E = Fsample − Fbackground, where 

F = 13C/(13C + 12C) = R/(R + 1), where R = (d13C/1,000 + 1) × RVPDB, and 
RVPDB  = 0.0112372 (Sweetman et al., 2016). The carbon uptake by 
fauna was standardized for faunal biomass (mg DW) for each layer. 
Data from layers were summed to produce C uptake by fauna for each 
core. Background isotope information for sediment was taken from 
control cores (without labelled algae). Isotope signature for faunal in‐
vertebrates was unavailable from control cores, probably due to the 
low sample weight, so E was calculated using background F values 
from samples collected from the field at the same site in March 2016 
(Queirós et al., 2019). 13Corg content in faunal tissue and sediment 
samples was corrected for the fact that the added macroalgal detritus 
is not the 100% 13C labelled: C‐uptake = 13C incorporated (%13C)/frac‐
tional abundance of 13C in algal detritus.

2.4 | Statistical analysis

The effects of [CO2] and [O2] on infaunal assemblages, within each 
sediment layer, were tested by means of a permutational multivari‐
ate analysis of variance (PERMANOVA; Anderson, 2001), based on 
Bray–Curtis dissimilarity matrix of untransformed data. The model 
included two fixed factors: [CO2] (ambient vs. elevated CO2) and 
[O2] (normoxia vs. hypoxia). In a separate analysis, the effects of 
[CO2] on the infaunal assemblages fed with algae previously ex‐
posed to enhanced CO2 were tested using one‐way PERMANOVA 
comparing the following treatments: control (ambient CO2/control 
algal detritus), elevated CO2/control algal detritus, elevated CO2/
algal detritus exposed to enhanced CO2. Two‐way analyses of vari‐
ance (ANOVA), with [CO2] and [O2] as fixed orthogonal factors, 
were carried out on univariate data (total infaunal density, spe‐
cies diversity, fauna and sediment incorporation of labelled algae, 
previously maintained ambient CO2). In a separate analysis, the 
effects of [CO2] on infaunal density, species diversity and faunal 
and sediment incorporation of algae, previously exposed to en‐
hanced CO2, were tested using one‐way ANOVA, comparing the 
same treatments described for one‐way PERMANOVA analysis. 
Cochran's C‐test was used to check for homogeneity of variances 
and, when necessary, data were log‐ or square root transformed. 
Student–Newman–Keuls (SNK) tests were used for comparison of 
the means.

3  | RESULTS

3.1 | Infaunal assemblage analyses

Animals (ind. per m2) were mainly found in the uppermost 2 cm 
of the sediment (0–2 cm: 563.48 ± 92.41; 2–6 cm: 58.33 ± 12.88; 
6–10 cm: 8.88 ± 4.79; data are mean ± SE value averaged across ex‐
perimental treatments; n = 15). A taxonomic list of infauna found 
within each sediment layer is reported in Appendix S1. There 
were no effects of [CO2] and [O2] on the structure of infaunal 
assemblages, within each sediment layer (Table S2). In addition, 
there were no differences in the infaunal assemblage composi‐
tion between different sources of algal detritus or under ambient 
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and elevated CO2 conditions, within each sediment layer (Table 
S3). In the upper 2  cm, echinoderms were the most abundant 
group with 56.18%, followed by polychaetes (27.29%), bivalves 
(5.79%), nematodes (4.96%), crustaceans (4.13%) and chelicerates 
(1.65%). In the 2–6 cm sediment layer, infaunal assemblage was 
dominated by polychaetes (85.72%), and the rest of the assem‐
blage included Sipuncula (7.14%), cnidarians (3.57%) and bivalves 
(3.57%). Only one species of bivalve (Lucinoma borealis) was found 
in the deeper layer of sediment. Furthermore, there were no sig‐
nificant effects of [CO2] and [O2] on the total infaunal density and 
species diversity, within each sediment layer (Tables S4a and S5a). 
Finally, no differences were found in the total infaunal density 
and species diversity between different sources of algal detritus 
or under ambient and elevated CO2 conditions, within each sedi‐
ment layer (Tables S4b and S5b). The number of species and bio‐
mass per feeding modes within each sediment layer is reported 
in Appendix S2.

3.2 | Organic carbon assimilation in faunal 
tissue and sediment

There was a significant interaction between [CO2] and [O2] on the 
organic carbon uptake by fauna (Table 1a). At ambient CO2, there 
were no differences in the organic carbon uptake by fauna be‐
tween oxygen treatments, whilst, under elevated CO2 level, the 
faunal carbon uptake was higher at normoxic than hypoxic condi‐
tions (Figure 1).

Sediment organic carbon enrichment was detected only in the 
2–6 cm sediment layer (Figure 2), whilst there was no increase in the 
organic carbon compared to the background in the 0–2 and 6–10 cm 
sediment layers (Figure S1). ANOVA on the 2–6  cm sediment layer 
showed no significant effect of [CO2] and [O2] on the organic carbon in‐
corporation in the sediment (Table 1a); however, there was a tendency 
(F = 3.767, p = .08) for the organic carbon burial to increase under hy‐
poxia compared to normoxia, regardless of CO2 treatments (Figure 2).

Source of variation df

Fauna C‐incorporation Sediment C‐incorporation

MS F p MS F p

(a)

[CO2] 1 0.0002 0.081 .783 0.0080 0.032 .863

[O2] 1 0.0017 0.788 .401 0.9533 3.767 .088

[CO2] × [O2] 1 0.0127 5.943 .041 0.0191 0.075 .791

Residual 8 0.0021     0.2531    

Transformation   log(x + 1)     log(x + 1)    

Cochran's test   p < .05     ns    

(b)

Food quality 2 0.0040 1.214 .361 2.0836 5.455 .045

Residual 6 0.0033     0.3820    

Transformation   log(x + 1)     log(x + 1)    

Cochran's test   p < .05     p < .05    

Bold values indicate significant results.

TA B L E  1   ANOVAs on the effects of 
(a) [CO2] (ambient, elevated CO2) and [O2] 
(normoxia, hypoxia) and (b) food quality 
(ambient CO2/control algal detritus, 
elevated CO2/control algal detritus, 
elevated CO2/algal detritus exposed 
to enhanced CO2) on organic carbon 
incorporation in faunal tissue and in 
sediments

F I G U R E  1   Organic carbon incorporation (mean ± SE) in fauna 
tissue (%; mg−1 m−2) under different combinations of [CO2] (ambient, 
elevated CO2) and [O2] (normoxia, hypoxia)

0.00

0.05

0.10

O
rg

an
ic

 c
ar

bo
n 

up
ta

ke
 b

y 
fa

un
a 

(%
; m

g–
1  

m
–2

)

Normoxia
Hypoxia

Ambient CO2 Elevated CO2

A

A

B

C
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There was no significant difference in carbon faunal uptake among 
different sources of algal detritus or between ambient and elevated 
CO2 treatments (Table 1b; Figure 3). However, faunal uptake of control 
algal detritus tended to increase under elevated CO2 levels (Figure 3).

Under enhanced CO2, sediment burial (layer 2–6  cm) of organic 
carbon from algal detritus previously exposed to elevated CO2 was 
greater than that from algal detritus maintained at ambient CO2 condi‐
tions (Table 1b; Figure 4). We found no accumulation of organic carbon 
in the 0–2 and 6–10 cm sediment layers for cores exposed to elevated 
CO2 with algal detritus previously exposed to elevated CO2 (Figure S2).

4  | DISCUSSION

Both elevated CO2 and hypoxia significantly influenced the flux of 
organic carbon in marine sediments, as mediated by benthic biota. 
Infauna responded to elevated CO2 by increasing the uptake of 

algal detritus at normal O2 concentrations, but not when exposed 
to hypoxia (Figure 5a,b). This suggests that metabolic depression 
may occur in marine invertebrates exposed to the combination of 
hypoxia and elevated CO2. As coastal areas with low O2 and high 
CO2 have increased globally and will continue to expand under fu‐
ture OA scenario, our results may suggest a limited ability of ben‐
thic communities to sustain normal mediation of important carbon 
cycling processes both under present and under future ocean 
conditions.

Ocean acidification can negatively affect benthic marine inver‐
tebrates, either directly, by altering physiological processes (Pan 
et al., 2015; Wang, Hu, Wu, Storch, & Poertner, 2018; Widdicombe 
& Spicer, 2008), or indirectly, via modification of food web interac‐
tions (Duarte et al., 2016; Kamya et al., 2017; Queirós et al., 2015). 
Previous studies have shown that elevated CO2 can result in re‐
duced growth rate, disruption of extracellular acid–base balance, 
alteration of metabolism, lethargy and modification of individual 
level trade‐offs in energy consuming processes of invertebrates, 
across different taxonomic groups (Kroeker, Kordas, Crim, & 
Singh, 2010; Portner & Farrell, 2008; Widdicombe & Spicer, 2008). 
Some species are able to maintain normal level of physiological 
activity under elevated CO2, although increasing metabolic rates 
and, thus, oxygen consumption (Pan et al., 2015; Queirós et al., 
2015; Stumpp et al., 2012; Widdicombe & Spicer, 2008; Wood 
et al., 2008). For instance, Wood et al. (2008) found increased res‐
piration and calcification rates and decreased arm muscle mass of 
the brittle star Amphiura filiformis under elevated CO2, indicating a 
trade‐off between the maintenance of skeletal integrity and loco‐
motion. Other studies have reported positive effects on the phys‐
iology (e.g. growth, calcification and metabolic rate) of molluscan 
species exposed to elevated CO2 when resources were abundant, 
suggesting that food availability can mediate the susceptibility of 
marine invertebrates to OA (Pansch, Schaub, Havenhand, & Wahl, 
2014; Ramajo, Marba, et al., 2016; Thomsen et al., 2013). In our 
study, elevated CO2 significantly increased the organic carbon up‐
take by fauna at normoxia, suggesting that infaunal invertebrates 
were able to compensate short‐term negative effects of elevated 
CO2 through enhanced food intake.

F I G U R E  3   Organic carbon 
incorporation (mean ± SE) in fauna tissue 
(%; mg−1 m−2) exposed to ambient CO2/
control algal detritus, elevated CO2/
control algal detritus and elevated CO2/
algal detritus exposed to elevated CO2 
(white, light grey and dark grey bars, 
respectively)
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Elevated CO2 can additionally affect the relationship between 
consumers and resources indirectly, by changing the nutritional 
quality of food (Duarte et al., 2016; Falkenberg, Russell, & Connell, 
2013; Kamya et al., 2017; Stiling & Cornelissen, 2007). We tested 
for this relationship and found that, under elevated CO2 condition, 
the uptake of fauna fed with algal detritus grown at elevated CO2 
(higher C:N ratio) was highly variable and did not differ from that of 
algae previously maintained at ambient CO2 (Figure 5a). Consumers 
can respond to changes in food nutritional quality at enhanced CO2 
either by preferentially consuming algae with higher nutritional 
quality (Falkenberg et al., 2013; Kamya et al., 2017) or by increas‐
ing consumption of less nutritional food (i.e. compensatory feeding; 
Cruz‐Rivera & Hay, 2001; Duarte et al., 2011, 2014), resulting in a 
species‐specific feeding behaviour of consumers (Tomas, Martinez‐
Crego, Hernan, & Santos, 2015). The lack of a clear response of 
infauna to altered resource quality could also be due to the slight, 
thought significant, increase in algal C/N ratio (~13%) under short‐
term elevated CO2 condition, compared to those recorded in lon‐
ger term elevated CO2 experiments in terrestrial systems (Stiling & 
Cornelissen, 2007). The duration of our experiment (4 weeks) was 

appropriate to detect the isotopic signal of traced carbon in primary 
consumers, whilst reducing changes in the measured response vari‐
ables due to subsequent processing of labelled materials within the 
food web (Middelburg, 2014; Queirós et al., 2019). Further studies 
are, however, needed to evaluate how the persistence of elevated 
CO2 conditions predicted under future climate scenarios can directly 
or indirectly modify resource–consumer relationships.

Importantly, once elevated CO2 was applied with hypoxia, no 
increased carbon uptake by fauna was observed, suggesting lim‐
ited capacity of marine invertebrates to cope with both stressors 
in combination. Feeding activity is a very oxygen demanding pro‐
cess and accounts for a large proportion of an organism's energy 
budget (Sokolova, 2013). Under hypoxia, the oxygen required by 
marine organisms to support energetically costly processes, such as 
feeding, assimilation and digestion of food, is not met by ambient 
oxygen supply. This means that also animals more tolerant to OA 
could be negatively affected by elevated CO2 when concurrently ex‐
posed to hypoxia (Miller, Breitburg, Burrell, & Keppel, 2016; Portner, 
Langenbuch, & Michaelidis, 2005; Tomasetti, Morrell, Merlo, & 
Gobler, 2018). This suggests that in well‐mixed shelf coastal systems, 

F I G U R E  5   Schematic illustration 
showing the effects of elevated CO2 and 
hypoxia on fauna‐mediated particulate 
organic carbon (POC) fluxes in coastal 
seabed, based on results from the 
mesocosm experiment. (a) Increased POC 
uptake by fauna, when consumers were 
exposed to elevated CO2 (direct effects 
of elevated CO2 on faunal metabolism); 
enhanced POC burial in the sediment and 
high variability (question mark) in the POC 
uptake by fauna, when both consumers 
and resources (algal detritus) were 
exposed to elevated CO2. (b) Hypoxia 
hindered the POC uptake by fauna at 
elevated CO2 and increased the POC 
burial in the sediment, when consumers 
were exposed to the combined effects of 
elevated CO2 and low oxygen
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as simulated in our study, even short‐term hypoxic events may com‐
promise the ability of marine invertebrates to deal with future ocean 
conditions. Indeed, benthic invertebrate contribution to sedimentary 
carbon cycling could be currently impaired in coastal areas exposed 
to low levels of oxygen and pH due to strong vertical stratification 
and high nutrient loading. Despite the predictions of an expansion of 
these hypoxic areas as a consequence of climate changes (Melzner 
et al., 2012), very few studies have, to date, investigated the cumu‐
lative effects of hypoxia and acidification on benthic communities 
(Gobler & Baumann, 2016). The combined effects of these stressors 
have been shown to reduce the survivorship and growth in bivalves 
(Gobler et al., 2014), reduce growth rate in abalone (Kim, Barry, & 
Micheli, 2013) and cause metabolic depression in different species 
of invertebrates, such as sipunculids, echinoderms and crustaceans 
(Portner et al., 2005; Steckbauer et al., 2015). Our results suggest 
that, in combination, elevated CO2 and hypoxia may limit the ability 
of benthic communities to mediate globally important carbon fluxes 
on the seabed (Middelburg, 2018; Snelgrove et al., 2018).

Organic carbon accumulation was detected at the intermedi‐
ate layer of sediment (2–6 cm), whilst we found no accumulation of 
carbon in the shallower and deeper sediment layers, regardless of 
experimental conditions. Organic matter arriving at the sediment 
surface may be subjected to many different processes. For instance, 
the organic carbon ingested by fauna may be egested back to the 
sediment and transferred through the food web or accumulated 
into deeper layers of the sediment. The carbon uptake by fauna and 
bacteria seems to be strongly related to their biomass (Woulds et 
al., 2016). In addition, at any trophic levels, organic carbon can be 
metabolized and remineralized through fast degradation (Gontikaki, 
van Oevelen, Soetaert, & Witte, 2011; Woulds et al., 2009). In our 
experiment, algal detritus added to the surface sediment was assimi‐
lated by fauna, which is particularly abundant in the top 0–2 cm layer, 
and then transferred to the underlying sediment layer (2–6 cm). The 
detection of carbon accumulation further away from the sediment–
water interface may also be due to the lower abundance of animals 
found in the deeper part of sediment cores, thereby the remaining 
carbon was not consumed by animals and remained in the sediment. 
This result highlights the importance of faunal mediation towards 
carbon cycling, with mixing between sedimentary carbon pools and 
the overlying water reduced to those layers where fauna were more 
abundant.

We report here that hypoxia tended to increase organic car‐
bon burial in the 2–6  cm layer, regardless of CO2 concentration 
(Figure 5b), possibly as a consequence of alterations on infaunal 
assemblage functioning (Keil, 2017). Previous experimental studies, 
using carbon‐labelled phytodetritus as a tracer, have shown that, 
under normoxia, both animals and microbes can assimilate labile 
carbon directly and respiration is generally the major fate of added 
labelled carbon (Woulds et al., 2016). Hypoxia may cause metabolic 
depression, reduced activity or lethargy in marine invertebrates 
(Galic, Hawkins, & Forbes, 2019; Levin et al., 2009), thereby indi‐
rectly promoting the organic carbon preservation in marine sedi‐
ments. For instance, Jessen et al. (2017) have recently shown that 

low oxygen negatively affected faunal diversity and activity (i.e. 
bioturbation) and promoted microbial anaerobic processes, resulting 
in a significant increase of the sediment organic carbon burial. To 
date, however, most studies estimating carbon fluxes on the seabed 
are still largely focused on physical and biogeochemical processes 
(Middelburg, 2018; Snelgrove et al., 2018). As recently highlighted in 
Queirós et al. (2019), continuing to ignore the vital mediation of sea‐
bed carbon cycling by invertebrates may likely limit our understand‐
ing of how the global ocean carbon cycle occurs, what processes 
and ecosystem components are involved, and what is their resilience 
under a changing ocean climate.

Elevated CO2 concentration in seawater did not affect organic 
carbon burial in our experiment directly. The effects of elevated 
CO2 on carbon sequestration in marine sediments are still unclear. 
Some laboratory studies have found an increase in microbial degra‐
dation of organic matter under elevated CO2 that could lead to lower 
carbon sequestration under elevated CO2 (Grossart et al., 2006; 
Piontek et al., 2013). However, the concurrent increase of primary 
production under elevated CO2 could reduce microbial degradation 
of organic matter, resulting in negligible effects of OA on organic 
carbon burial. For instance, in a recent study, Zark et al. (2015) found 
no effects of elevated CO2 on the concentration and molecular com‐
position of organic carbon, despite a clear effect of phytoplankton 
on organic matter production, suggesting no change in the amount 
of organic matter in coastal systems under elevated CO2 condition. 
In contrast, in our study, elevated CO2 significantly increased the 
sediment deposition of algal detritus previously exposed to elevated 
CO2, likely as a consequence of its decreased nutritional value (i.e. 
higher C:N ratio, Figure 5a). This is in accordance with previous work 
(Riebesell et al., 2007), where an increase in C:N ratio of primary 
producer tissues (about 16% at 700 µatm CO2 level) was also ob‐
served under elevated CO2, due to an overconsumption of dissolved 
inorganic carbon, leading to an increase in the export of particulate 
organic carbon. Stoichiometric changes of exported organic matter 
at elevated CO2 could have a major impact on biogeochemical cy‐
cles (Figure 6; Andrews, Buitenhuis, Quéré, & Suntharalingam, 2017; 
Hofmann & Schellnhuber, 2009). Most of the oxygen consumed 
during organic matter respiration is used to oxidize carbon rather 
than nitrogen, thus resulting in excess oxygen consumption in deep 
water (Oschlies, Schulz, Riebesell, & Schmittner, 2008). In addition, 
elevated CO2 may limit the sinking speed and transport of organic 
matter through the water column, by reducing the production of 
calcareous (CaCO3) and siliceous (SiO2) minerals, which provide bal‐
last for the transport of organic carbon in deep water (Hofmann & 
Schellnhuber, 2009). This could, ultimately, result in shallower or‐
ganic matter remineralization and further expansions of O2 deple‐
tion zones (Andrews et al., 2017; Hofmann & Schellnhuber, 2009). 
Importantly, the combined effects of elevated CO2 and hypoxia may 
slow down the mineralization of organic matter, likely increasing the 
burial of enhanced organic carbon production in marine sediments. 
Expansion of oxygen‐depleted zones may increase denitrification 
and loss of fixed nitrogen, potentially impact nitrogen cycling and 
ocean productivity (Kalvelage et al., 2013). Our results highlight how 
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changes in resources, in addition to consumers, may affect import‐
ant processes determining ocean carbon cycling, and that food web 
interactions are key to predict ecosystem‐level impacts of climate 
change.

In summary, the results of our experiment show that elevated 
CO2 and episodic hypoxic events may affect net sequestration of 
organic carbon in coastal systems through the modification of rele‐
vant faunal‐mediated pathways and resource quality. To the best of 
our knowledge, this is the first study experimentally investigating 
the combined effects of these two stressors on faunal‐mediated 
carbon fluxes on a well‐mixed coastal seabed. Episodic events of 
hypoxia, as simulated in our study, have been commonly docu‐
mented in coastal systems, following intense depositions of or‐
ganic matter at the seabed (Tait et al., 2015; Zhang et al., 2015). 
However, it is noteworthy that the persistence of low O2 may also 
be driven by other seasonal and interannual cycles, depending on 
different processes, such as hydrodynamic conditions of the water 
body, thermal stratification and nutrient loads (Breitburg et al., 
2018). Hypoxic areas, such as the Western Baltic Sea, the coasts 
of Japan and China or the Gulf of Mexico, are currently affected by 
coastal acidification, due to heterotrophic degradation of organic 
matter (Melzner et al., 2012; Thomsen et al., 2013). Thus, evaluating 
the combined effects of hypoxia and elevated CO2 on marine life 
is essential for understanding how marine ecosystems respond to 
these conditions under both current and future climate conditions. 
In addition, further studies could also evaluate the impacts of future 
OA scenario on biological and biogeochemical processes in these 
coastal hypoxic systems already exposed to low O2 and high CO2 
conditions. The capacity of marine organisms to sustain physiologi‐
cal processes under stress (e.g. reproduction, growth, calcification, 

locomotion) may determine their survival under a changing climate 
(Widdicombe & Spicer, 2008). Increase of food uptake is a strategy 
that has been observed across taxa, and reflects higher metabolic 
costs to the individual associated with stress response pathways 
(Queirós et al., 2015; Thomsen et al., 2013). Our results indicated 
that this compensatory mechanism may be impaired under hypoxia, 
possibly weakening the ability of marine invertebrates to cope with 
elevated CO2 and potentially reflects that higher metabolic costs 
will come at the expense of increased O2 uptake rates in aerobes. 
Alternatively, a decrease in feeding rates could also represent a 
mechanism for marine organisms to deal with the exposure to el‐
evated CO2 and low O2, by reducing aerobic metabolism and thus 
O2 requirement (i.e. metabolic depression; Pörtner, Langenbuch, & 
Reipschläger, 2004; Rosa & Seibel, 2008). This could result in re‐
duced growth rates and altered behaviour (Galic et al., 2019; Gobler 
et al., 2014; Tomasetti et al., 2018). Thus, hypoxia and elevated CO2, 
in combination, may impair the key role of infaunal assemblages in 
determining carbon fluxes at the sediment–water interface and their 
contribution towards carbon sequestration (Queirós et al., 2019). 
In addition, changes in organic matter quality due to elevated CO2 
could increase the export of organic carbon in marine sediments and 
the expansion of low O2 concentration, ultimately altering ecosys‐
tem functioning, including nitrogen cycling and ocean productivity 
at global scales (Hofmann & Schellnhuber, 2009; Kalvelage et al., 
2013; Levin, 2018).

In this light, management actions aimed to reduce local stress‐
ors (e.g. eutrophication‐driven hypoxia and coastal acidification) 
can be considered a good strategy for mitigating the impacts of 
global climate change (e.g. OA) on marine community functions 
and biogeochemical processes. For instance, although measures 

F I G U R E  6   Diagram showing the 
potential impacts of elevated seawater 
CO2 on biogeochemical cycles, either 
by changing the stoichiometric ratio of 
organic detritus, which arrives to the 
seabed, or reducing organic matter (OM) 
transport through the water column. Blue 
frames indicate processes in the water 
column; brown frames indicate processes 
at the seabed
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to reduce eutrophication can take a long time to become effective 
(Varjopuro et al., 2014), increases in seawater oxygen concentra‐
tion have been documented in some coastal systems, following 
nutrient input reduction (Kemp, Testa, Conley, Gilbert, & Hagy, 
2009). As the incidence of hypoxia and elevated CO2 are predicted 
to increase as a consequence of climate change (Breitburg et al., 
2018; Gobler & Baumann, 2016), more studies are necessary to 
raise awareness of the impacts of multiple stressors on carbon 
fluxes in coastal marine sediments under future climate change 
scenarios, as well as to tune up suitable remediation strategies.
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