495 research outputs found

    All fiber-based LIBS feedback system for endoscopic laser surgery

    Get PDF
    There has been a particular interest to use laser-induced breakdown spectroscopy (LIBS) as a feedback mechanism for laser surgeries in the past decade 1-6. However, none of the mentioned setups 1-6 is suitable for endoscopic applications due to their bulky free-space configurations. In minimally nvasive surgeries, the major challenge is to integrate ablating laser waveguides and also all sensors inside the narrow channel of the endoscope. In this paper, we present a LIBS setup, which uses a multimode silica fiber for both delivering the inducing laser pulse and collecting the plasma emission light through the endoscope. The fiber-based LIBS setup consists of a frequency-doubled Q-switched Nd:YAG laser (Q-smart 450, Quantel, 532 nm, 5 ns, 60 mJ, 1 Hz), a cleaved large-core silica fiber (1.5 m-long, 1500 um-core, 0.39-NA, 70 mm-bending radius), and an in-house Echelle spectrometer (See Fig. 1). A 75 cm plano-convex laser line lens (Thorlabs, LA1978-YAG) was used to couple the laser beam into a multimode step-index silica fiber. Such a long focal length convex lens was used to avoid breakdown process in air. Moreover, the input face of the fiber was placed at 1 cm behind the focal point to maintain the laser power density below the damage threshold of the fiber. Two tight focusing lenses were placed in front of the fiber end face to collimate the highly divergent laser beam and refocus it onto the sample surface. The light emitted from the microplasma generated at the surface of the sample (bone and its surrounding soft tissues) was collected by the same optics and directed to the spectrometer for characterization. The performance of the developed fiber-based LIBS setup for classification of different tissues has been investigated and compared with the free-space LIBS. The feedback provided by this fiber-based LIBS setup can be used in minimally invasive laserosteotomies in order to stop the laser before causing any collateral damage to surrounding tissues. References [1] F. Yueh, H. Zheng, J.P. Singh, S. Burgess, Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification, Spectrochim. Acta B 64 (2009) 1059-1067. [2] R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, et al., Pilot study of laser induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery-An approach on a feedback Laser control mechanism, Spectrochim. Acta B 87 (2013) 175-181. [3] K. Henn, G.G. Gubaidullin, J. Bongartz, J. Wahrburg, H. Roth, et al., A spectroscopic approach to monitor the cut processing in pulsed laser osteotomy, Lasers Med. Sci. 28 (2013) 87-92. [4] H. Huang, L.-M. Yang, S. Bai, J. Liu, Smart surgical tool, J. Biomed. Opt. 20 (2015) 028001. [5] R.K. Gill, Z.J. Smith, C. Lee, S. Wachsmann-Hogiu, The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study, J. Biophotonics 9 (2016) 171-180. [6] H. Abbasi, G. Rauter, R. Guzman, P.C. Cattin, A. Zam, Laser-induced breakdown spectroscopy as a potential tool for auto carbonization detection in laserosteotomy, J. Biomed. Opt. 23 (2018) 071206

    Thermal and energetic consequences of nest location and breeding times in Water Pipits (Anthus spinoletta).

    Full text link
    The thermal environment has pronounced effects on the energy costs of thermoregulation and affects an animal's allocation of energy to self-maintenance and parental care. Consequently, the selection of reproductive periods, breeding habitats and nest-sites with a favourable microclimate can be advantageous, especially for birds breeding in harsh environments. In this study on Alpine Water Pipits (Anthus spinoletta), we evaluate the importance of spatial and temporal factors on thermoregulatory costs by combining laboratory measurements of metabolic rates under various temperatures with standard operative temperatures (Te~) recorded in the field in different microhabitats. Using these measurements we estimate the thermal and energetic consequences of nest locality and timing of reproduction. Our results show: (1) In the morning, Te~ values were much higher on the east-north-east (ENE) slope of a valley than on the west-south-west (WSW) slope; in the afternoon this pattern was reversed. As a consequence, energy costs (Ehour) for thermoregulation on the ENE slope were up to 0.6 RMR (resting metabolic rate at night) lower than on the WSW slope during morning hours and about 0.8 RMR higher during afternoon hours. (2) During the incubation and nestling phases of first and second broods, total energy expenditure for thermoregulation in the daytime (Edaytime) was 0.2-0.3 RMR higher on the ENE slope than on the WSW slope. (3) Within slopes, Edaytime was lower during second broods than during first broods, with differences of 0.06-0.07 RMR during incubation and of 0.32 RMR during nestling care. These differences correspond to the flying costs of females incubating eggs (0.09 RMR) and rearing nestlings (0.25 RMR). We conclude that nest placement in relation to microclimate can improve the female's energy budget, both in terms of the total daily expenditure and its diurnal pattern. From thermal considerations alone, delaying breeding into mid-summer would be advantageous, but this advantage is probably outweighed by the reduced chances for second and replacement clutches and by the necessity to complete moult before migration

    Mediolateral Damping of an Overhead Body Weight Support System Assists Stability During Treadmill Walking

    Get PDF
    Background Body weight support systems with three or more degrees of freedom (3-DoF) are permissive and safe environments that provide unloading and allow unrestricted movement in any direction. This enables training of walking and balance control at an early stage in rehabilitation. Transparent systems generate a support force vector that is near vertical at all positions in the workspace to only minimally interfere with natural movement patterns. Patients with impaired balance, however, may benefit from additional mediolateral support that can be adjusted according to their capacity. An elegant solution for providing balance support might be by rendering viscous damping along the mediolateral axis via the software controller. Before use with patients, we evaluated if control-rendered mediolateral damping evokes the desired stability enhancement in able-bodied individuals. Methods A transparent, cable-driven robotic body weight support system (FLOAT) was used to provide transparent body weight support with and without mediolateral damping to 21 able-bodied volunteers while walking at preferred gait velocity on a treadmill. Stability metrics reflecting resistance to small and large perturbations were derived from walking kinematics and compared between conditions and to free walking. Results Compared to free walking, the application of body weight support per-se resulted in gait alterations typically associated with body weight support, namely increased step length and swing phase. Frontal plane dynamic stability, measured by kinematic variability and nonlinear dynamics of the center of mass, was increased under body weight support, indicating reduced balance requirements in both damped and undamped support conditions. Adding damping to the body weight support resulted in a greater increase of frontal plane stability. Conclusion Adding mediolateral damping to 3-DoF body weight support systems is an effective method of increasing frontal plane stability during walking in able-bodied participants. Building on these results, adjustable mediolateral damping could enable therapists to select combinations of unloading and stability specifically for each patient and to adapt this in a task specific manner. This could extend the impact of transparent 3-DoF body weight support systems, enabling training of gait and active balance from an early time point onwards in the rehabilitation process for a wide range of mobility activities of daily life

    A new dihydroxysterol from the marine phytoplankton Diacronema sp.

    Get PDF
    Diacronema sp. was cultured and its sterols were separated by column chromatography on silica gel. The new sterol 24-ethyl-4α-methyl-cholestane-3,20-diol (1) was characterised by NMR and MS spectrometry, as well as (22E)-24-ethyl-4α-methyl-5α-cholest-22-en-3β-ol (2) and β-sitosterol, the major components of the sterol fractions. Neither the biosynthetic origin of the new dihydroxysterol nor its role in the biochemistry of Diacronema is known.info:eu-repo/semantics/publishedVersio

    New In Vitro studies on the bioprofile of Genista tenera antihyperglycemic extract

    Get PDF
    The inhibition of a-glucosidase and glucose-6-phosphatase, two enzymes involved in the carbohydrate metabolism, is an important target to control glycaemia on individuals with type 2 diabetes. In this work we report for the first time the inhibition of both enzymes by the antihyperglycemic n-butanol extract from Genista tenera (Fabaceae). This extract decreased a-glucosidase and glucose-6-phosphatase activities to 0.97 and 80.25 %, respectively, being more effective than acarbose, and phlorizin, the positive controls, which reduced enzymes activities only to 17.39 and 96.06 %. Once inflammation and oxidative stress are related to diabetic impairments, the anti-inflammatory activity of the extract was also evaluated, through its inhibitory activity over COX-1 enzyme (47.5 % inhibition). Moreover, after induction of oxidative stress by UV radiation, the viability of irradiated rat liver hepatoma cells exposed to the extract was significantly higher (67.82 %) than that promoted by ascorbic acid, the positive control (45.05 %). In addition, the stability of the extract under gastrointestinal conditions was evaluated by HPLC–DAD-ESI–MS/MS. Flavonoid diglycosides were identified as the main constituents of the extract, and no alterations in the chemical composition nor in the antioxidant activity were observed after in vitro digestion with artificial gastric and pancreatic juices.Fundação para a Ciência e a Tecnologia e Comissão Europeiainfo:eu-repo/semantics/publishedVersio

    Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy

    Get PDF
    In laserosteotomy, it is vital to avoid thermal damage of the surrounding tissue, such as carbonization, since carbonization does not only deteriorate the ablation efficiency but also prolongs the healing process. The state-of-the-art method to avoid carbonization is irrigation systems; however, it is difficult to determine the desired flow rate of the air and cooling water based on previous experiments without online monitoring of the bone surface. Lack of such feedback during the ablation process can cause carbonization in case of a possible error in the irrigation system or slow down the cutting process when irrigating with too much cooling water. The aim of this paper is to examine laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy. By monitoring the laser-driven plasma generated during nanosecond pulse ablation of porcine bone samples, carbonization is hypothesized to be detectable. For this, the collected spectra were analyzed based on variation of a specific pair of emission line ratios in both groups of samples: normal and carbonized bone. The results confirmed a high accuracy of over 95% in classifying normal and carbonized bone

    Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    Get PDF
    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume

    Differentiation of femur bone from surrounding soft tissue using laserinduced breakdown spectroscopy as a feedback system for Smart Laserosteotomy

    Get PDF
    Although laserosteotomes have become generally accepted devices in surgical applications, they still suffer from a lack of information about the type of tissue currently being ablated; as a result, critical structures of the body under or near the focal spot of the laser beam are prone to inadvertent ablation. The lack of information about the properties of the ablated tissue can be solved by connecting the laserosteotome to an optical detection setup which can differentiate various types of tissues, especially bone from connective soft tissues. This study examines the applicability of laser-induced breakdown spectroscopy (LIBS) as a potential technique to differentiate bone from surrounding soft tissue (fat and muscle). In this experiment, fresh porcine femur bone, muscle, and fat were used as hard and soft tissue samples. The beam of a nanosecond frequency-doubled Nd:YAG laser was used to ablate the tissue samples and generate the plasma. The plasma light emitted from the ablated spot, which corresponds to the recombination spectra of ionized atoms and molecules, was gathered with a collection optic (including a reflective light collector and a fiber optic) and sent to an Echelle spectrometer for resolving the atomic composition of the ablated sample. Afterwards, Discriminant Function Analysis (DFA) based on the ratio of the intensity of selected peak pairs was performed to classify three sample groups (bone, muscle, and fat). Lastly, the sensitivity, specificity, and accuracy of the proposed method were calculated. Sensitivity and specificity of 100 % and 99 % were achieved, respectively, to differentiate bone from surrounding soft tissue
    • …
    corecore