696 research outputs found
Phase-noise induced limitations on cooling and coherent evolution in opto-mechanical systems
We present a detailed theoretical discussion of the effects of ubiquitous
laser noise on cooling and the coherent dynamics in opto-mechanical systems.
Phase fluctuations of the driving laser induce modulations of the linearized
opto-mechanical coupling as well as a fluctuating force on the mirror due to
variations of the mean cavity intensity. We first evaluate the influence of
both effects on cavity cooling and find that for a small laser linewidth the
dominant heating mechanism arises from intensity fluctuations. The resulting
limit on the final occupation number scales linearly with the cavity intensity
both under weak and strong coupling conditions. For the strong coupling regime,
we also determine the effect of phase noise on the coherent transfer of single
excitations between the cavity and the mechanical resonator and obtain a
similar conclusion. Our results show that conditions for optical ground state
cooling and coherent operations are experimentally feasible and thus laser
phase noise does pose a challenge but not a stringent limitation for
opto-mechanical systems
Probing macroscopic realism via Ramsey correlations measurements
We describe a new and experimentally feasible protocol for performing
fundamental tests of quantum mechanics with massive objects. In our approach a
single two level system is used to probe the motion of a nanomechanical
resonator via multiple Ramsey interference measurements. This scheme enables
the measurement of modular variables of macroscopic continuous variable systems
and we show that correlations thereof violate a Leggett-Garg inequality and can
be applied for tests of quantum contextuality. Our method can be implemented
with a variety of different solid state or photonic qubit-resonator systems and
provides a clear experimental signature to distinguish the predictions of
quantum mechanics from those of other alternative theories at a macroscopic
scale.Comment: 5 pages plus Supplementary Material. Published in Phys. Rev. Let
Quantum feedback cooling of a single trapped ion in front of a mirror
We develop a theory of quantum feedback cooling of a single ion trapped in
front of a mirror. By monitoring the motional sidebands of the light emitted
into the mirror mode we infer the position of the ion, and act back with an
appropriate force to cool the ion. We derive a feedback master equation along
the lines of the quantum feedback theory developed by Wiseman and Milburn,
which provides us with cooling times and final temperatures as a function of
feedback gain and various system parameters.Comment: 15 pages, 11 Figure
BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking
Data generation is a key issue in big data benchmarking that aims to generate
application-specific data sets to meet the 4V requirements of big data.
Specifically, big data generators need to generate scalable data (Volume) of
different types (Variety) under controllable generation rates (Velocity) while
keeping the important characteristics of raw data (Veracity). This gives rise
to various new challenges about how we design generators efficiently and
successfully. To date, most existing techniques can only generate limited types
of data and support specific big data systems such as Hadoop. Hence we develop
a tool, called Big Data Generator Suite (BDGS), to efficiently generate
scalable big data while employing data models derived from real data to
preserve data veracity. The effectiveness of BDGS is demonstrated by developing
six data generators covering three representative data types (structured,
semi-structured and unstructured) and three data sources (text, graph, and
table data)
Reservoir engineering and dynamical phase transitions in optomechanical arrays
We study the driven-dissipative dynamics of photons interacting with an array
of micromechanical membranes in an optical cavity. Periodic membrane driving
and phonon creation result in an effective photon-number conserving non-unitary
dynamics, which features a steady state with long-range photonic coherence. If
the leakage of photons out of the cavity is counteracted by incoherent driving
of the photonic modes, we show that the system undergoes a dynamical phase
transition to the state with long-range coherence. A minimal system, composed
of two micromechanical membranes in a cavity, is studied in detail, and it is
shown to be a realistic setup where the key processes of the driven-dissipative
dynamics can be seen.Comment: 16 pages, 9 figure
Precision radial velocities of double-lined spectroscopic binaries with an iodine absorption cell
A spectroscopic technique employing an iodine absorption cell (I_2) to
superimpose a reference spectrum onto a stellar spectrum is currently the most
widely adopted approach to obtain precision radial velocities of solar-type
stars. It has been used to detect ~80 extrasolar planets out of ~130 know. Yet
in its original version, it only allows us to measure precise radial velocities
of single stars. In this paper, we present a novel method employing an I_2
absorption cell that enables us to accurately determine radial velocities of
both components of double-lined binaries. Our preliminary results based on the
data from the Keck I telescope and HIRES spectrograph demonstrate that 20-30
m/s radial velocity precision can be routinely obtained for "early" type
binaries (F3-F8). For later type binaries, the precision reaches ~10 m/s. We
discuss applications of the technique to stellar astronomy and searches for
extrasolar planets in binary systems. In particular, we combine the
interferometric data collected with the Palomar Testbed Interferometer with our
preliminary precision velocities of the spectroscopic double-lined binary HD
4676 to demonstrate that with such a combination one can routinely obtain
masses of the binary components accurate at least at the level of 1.0%.Comment: Accepted for publication in The Astrophysical Journa
Electric-field noise above a thin dielectric layer on metal electrodes
The electric-field noise above a layered structure composed of a planar metal electrode covered by a thin dielectric is evaluated and it is found that the dielectric film considerably increases the noise level, in proportion to its thickness. Importantly, even a thin (mono) layer of a low-loss dielectric can enhance the noise level by several orders of magnitude compared to the noise above a bare metal. Close to this layered surface, the power spectral density of the electric field varies with the inverse fourth power of the distance to the surface, rather than with the inverse square, as it would above a bare metal surface. Furthermore, compared to a clean metal, where the noise spectrum does not vary with frequency (in the radio-wave and microwave bands), the dielectric layer can generate electric-field noise which scales in inverse proportion to the frequency. For various realistic scenarios, the noise levels predicted from this model are comparable to those observed in trapped-ion experiments. Thus, these findings are of particular importance for the understanding and mitigation of unwanted heating and decoherence in miniaturized ion traps.published_or_final_versio
Generation of Squeezed States of Nanomechanical Resonators by Reservoir Engineering
An experimental demonstration of a non-classical state of a nanomechanical
resonator is still an outstanding task. In this paper we show how the resonator
can be cooled and driven into a squeezed state by a bichromatic microwave
coupling to a charge qubit. The stationary oscillator state exhibits a reduced
noise in one of the quadrature components by a factor of 0.5 - 0.2. These
values are obtained for a 100 MHz resonator with a Q-value of 10 to 10
and for support temperatures of T 25 mK. We show that the coupling to
the charge qubit can also be used to detect the squeezed state via measurements
of the excited state population. Furthermore, by extending this measurement
procedure a complete quantum state tomography of the resonator state can be
performed. This provides a universal tool to detect a large variety of
different states and to prove the quantum nature of a nanomechanical
oscillator.Comment: 13 pages,9 figure
Feedback cooling of a single trapped ion
Based on a real-time measurement of the motion of a single ion in a Paul
trap, we demonstrate its electro-mechanical cooling below the Doppler limit by
homodyne feedback control (cold damping). The feedback cooling results are well
described by a model based on a quantum mechanical Master Equation.Comment: 4 pages, 3 figure
Measuring mechanical motion with a single spin
We study theoretically the measurement of a mechanical oscillator using a
single two level system as a detector. In a recent experiment, we used a single
electronic spin associated with a nitrogen vacancy center in diamond to probe
the thermal motion of a magnetized cantilever at room temperature {Kolkowitz et
al., Science 335, 1603 (2012)}. Here, we present a detailed analysis of the
sensitivity limits of this technique, as well as the possibility to measure the
zero point motion of the oscillator. Further, we discuss the issue of
measurement backaction in sequential measurements and find that although
backaction heating can occur, it does not prohibit the detection of zero point
motion. Throughout the paper we focus on the experimental implementation of a
nitrogen vacancy center coupled to a magnetic cantilever; however, our results
are applicable to a wide class of spin-oscillator systems. Implications for
preparation of nonclassical states of a mechanical oscillator are also
discussed.Comment: 17 pages, 6 figure
- …
