696 research outputs found

    Phase-noise induced limitations on cooling and coherent evolution in opto-mechanical systems

    Full text link
    We present a detailed theoretical discussion of the effects of ubiquitous laser noise on cooling and the coherent dynamics in opto-mechanical systems. Phase fluctuations of the driving laser induce modulations of the linearized opto-mechanical coupling as well as a fluctuating force on the mirror due to variations of the mean cavity intensity. We first evaluate the influence of both effects on cavity cooling and find that for a small laser linewidth the dominant heating mechanism arises from intensity fluctuations. The resulting limit on the final occupation number scales linearly with the cavity intensity both under weak and strong coupling conditions. For the strong coupling regime, we also determine the effect of phase noise on the coherent transfer of single excitations between the cavity and the mechanical resonator and obtain a similar conclusion. Our results show that conditions for optical ground state cooling and coherent operations are experimentally feasible and thus laser phase noise does pose a challenge but not a stringent limitation for opto-mechanical systems

    Probing macroscopic realism via Ramsey correlations measurements

    Full text link
    We describe a new and experimentally feasible protocol for performing fundamental tests of quantum mechanics with massive objects. In our approach a single two level system is used to probe the motion of a nanomechanical resonator via multiple Ramsey interference measurements. This scheme enables the measurement of modular variables of macroscopic continuous variable systems and we show that correlations thereof violate a Leggett-Garg inequality and can be applied for tests of quantum contextuality. Our method can be implemented with a variety of different solid state or photonic qubit-resonator systems and provides a clear experimental signature to distinguish the predictions of quantum mechanics from those of other alternative theories at a macroscopic scale.Comment: 5 pages plus Supplementary Material. Published in Phys. Rev. Let

    Quantum feedback cooling of a single trapped ion in front of a mirror

    Full text link
    We develop a theory of quantum feedback cooling of a single ion trapped in front of a mirror. By monitoring the motional sidebands of the light emitted into the mirror mode we infer the position of the ion, and act back with an appropriate force to cool the ion. We derive a feedback master equation along the lines of the quantum feedback theory developed by Wiseman and Milburn, which provides us with cooling times and final temperatures as a function of feedback gain and various system parameters.Comment: 15 pages, 11 Figure

    BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking

    Full text link
    Data generation is a key issue in big data benchmarking that aims to generate application-specific data sets to meet the 4V requirements of big data. Specifically, big data generators need to generate scalable data (Volume) of different types (Variety) under controllable generation rates (Velocity) while keeping the important characteristics of raw data (Veracity). This gives rise to various new challenges about how we design generators efficiently and successfully. To date, most existing techniques can only generate limited types of data and support specific big data systems such as Hadoop. Hence we develop a tool, called Big Data Generator Suite (BDGS), to efficiently generate scalable big data while employing data models derived from real data to preserve data veracity. The effectiveness of BDGS is demonstrated by developing six data generators covering three representative data types (structured, semi-structured and unstructured) and three data sources (text, graph, and table data)

    Reservoir engineering and dynamical phase transitions in optomechanical arrays

    Get PDF
    We study the driven-dissipative dynamics of photons interacting with an array of micromechanical membranes in an optical cavity. Periodic membrane driving and phonon creation result in an effective photon-number conserving non-unitary dynamics, which features a steady state with long-range photonic coherence. If the leakage of photons out of the cavity is counteracted by incoherent driving of the photonic modes, we show that the system undergoes a dynamical phase transition to the state with long-range coherence. A minimal system, composed of two micromechanical membranes in a cavity, is studied in detail, and it is shown to be a realistic setup where the key processes of the driven-dissipative dynamics can be seen.Comment: 16 pages, 9 figure

    Precision radial velocities of double-lined spectroscopic binaries with an iodine absorption cell

    Full text link
    A spectroscopic technique employing an iodine absorption cell (I_2) to superimpose a reference spectrum onto a stellar spectrum is currently the most widely adopted approach to obtain precision radial velocities of solar-type stars. It has been used to detect ~80 extrasolar planets out of ~130 know. Yet in its original version, it only allows us to measure precise radial velocities of single stars. In this paper, we present a novel method employing an I_2 absorption cell that enables us to accurately determine radial velocities of both components of double-lined binaries. Our preliminary results based on the data from the Keck I telescope and HIRES spectrograph demonstrate that 20-30 m/s radial velocity precision can be routinely obtained for "early" type binaries (F3-F8). For later type binaries, the precision reaches ~10 m/s. We discuss applications of the technique to stellar astronomy and searches for extrasolar planets in binary systems. In particular, we combine the interferometric data collected with the Palomar Testbed Interferometer with our preliminary precision velocities of the spectroscopic double-lined binary HD 4676 to demonstrate that with such a combination one can routinely obtain masses of the binary components accurate at least at the level of 1.0%.Comment: Accepted for publication in The Astrophysical Journa

    Electric-field noise above a thin dielectric layer on metal electrodes

    Get PDF
    The electric-field noise above a layered structure composed of a planar metal electrode covered by a thin dielectric is evaluated and it is found that the dielectric film considerably increases the noise level, in proportion to its thickness. Importantly, even a thin (mono) layer of a low-loss dielectric can enhance the noise level by several orders of magnitude compared to the noise above a bare metal. Close to this layered surface, the power spectral density of the electric field varies with the inverse fourth power of the distance to the surface, rather than with the inverse square, as it would above a bare metal surface. Furthermore, compared to a clean metal, where the noise spectrum does not vary with frequency (in the radio-wave and microwave bands), the dielectric layer can generate electric-field noise which scales in inverse proportion to the frequency. For various realistic scenarios, the noise levels predicted from this model are comparable to those observed in trapped-ion experiments. Thus, these findings are of particular importance for the understanding and mitigation of unwanted heating and decoherence in miniaturized ion traps.published_or_final_versio

    Generation of Squeezed States of Nanomechanical Resonators by Reservoir Engineering

    Get PDF
    An experimental demonstration of a non-classical state of a nanomechanical resonator is still an outstanding task. In this paper we show how the resonator can be cooled and driven into a squeezed state by a bichromatic microwave coupling to a charge qubit. The stationary oscillator state exhibits a reduced noise in one of the quadrature components by a factor of 0.5 - 0.2. These values are obtained for a 100 MHz resonator with a Q-value of 104^4 to 105^5 and for support temperatures of T \approx 25 mK. We show that the coupling to the charge qubit can also be used to detect the squeezed state via measurements of the excited state population. Furthermore, by extending this measurement procedure a complete quantum state tomography of the resonator state can be performed. This provides a universal tool to detect a large variety of different states and to prove the quantum nature of a nanomechanical oscillator.Comment: 13 pages,9 figure

    Feedback cooling of a single trapped ion

    Full text link
    Based on a real-time measurement of the motion of a single ion in a Paul trap, we demonstrate its electro-mechanical cooling below the Doppler limit by homodyne feedback control (cold damping). The feedback cooling results are well described by a model based on a quantum mechanical Master Equation.Comment: 4 pages, 3 figure

    Measuring mechanical motion with a single spin

    Get PDF
    We study theoretically the measurement of a mechanical oscillator using a single two level system as a detector. In a recent experiment, we used a single electronic spin associated with a nitrogen vacancy center in diamond to probe the thermal motion of a magnetized cantilever at room temperature {Kolkowitz et al., Science 335, 1603 (2012)}. Here, we present a detailed analysis of the sensitivity limits of this technique, as well as the possibility to measure the zero point motion of the oscillator. Further, we discuss the issue of measurement backaction in sequential measurements and find that although backaction heating can occur, it does not prohibit the detection of zero point motion. Throughout the paper we focus on the experimental implementation of a nitrogen vacancy center coupled to a magnetic cantilever; however, our results are applicable to a wide class of spin-oscillator systems. Implications for preparation of nonclassical states of a mechanical oscillator are also discussed.Comment: 17 pages, 6 figure
    corecore