An experimental demonstration of a non-classical state of a nanomechanical
resonator is still an outstanding task. In this paper we show how the resonator
can be cooled and driven into a squeezed state by a bichromatic microwave
coupling to a charge qubit. The stationary oscillator state exhibits a reduced
noise in one of the quadrature components by a factor of 0.5 - 0.2. These
values are obtained for a 100 MHz resonator with a Q-value of 104 to 105
and for support temperatures of T ≈ 25 mK. We show that the coupling to
the charge qubit can also be used to detect the squeezed state via measurements
of the excited state population. Furthermore, by extending this measurement
procedure a complete quantum state tomography of the resonator state can be
performed. This provides a universal tool to detect a large variety of
different states and to prove the quantum nature of a nanomechanical
oscillator.Comment: 13 pages,9 figure