704 research outputs found

    Thermogravimetry and neutron thermodiffractometry studies of the H-YBa2Cu3O7 system.

    Get PDF
    The high Tc superconducting oxide YBa2Cu3O7¿x reacts with hydrogen gas. Thermogravimetric, X-ray and neutron scattering experiments allow us to propose a two-step type of hydrogen bonding. Firstly, a few hydrogen atoms fill some oxygen vacancies and may favourably modify the electron state, giving rise to a slight increase in the critical temperature. Secondly, after a prolonged heating period, the collapse of the YBa2Cu3O7¿x type framework and of superconductivity were observed, and a new, highly hydrogenated material appeared

    Recent insights into the complexity of Tank-binding kinase 1 signaling networks: The emerging role of cellular localization in the activation and substrate specificity of TBK1

    Get PDF
    AbstractTank-binding kinase 1 (TBK1) serves as an important component of multiple signaling pathways. While the majority of research on TBK1 has focused on its role in innate immunity, critical functions for TBK1 in autophagy and cancer are beginning to emerge. This review highlights recent structural and biochemical studies that provide insights into the molecular mechanism of TBK1 activation and summarizes what is known to date about TBK1 substrate selection. Growing evidence suggests that both processes rely on TBK1 subcellular localization, with a variety of adaptor proteins each directing TBK1 to discrete signaling complexes for different cellular responses. Further study of TBK1-mediated pathways will require careful consideration of TBK1 mechanisms of activation and specificity for proper dissection of these distinct signaling cascades

    Do we understand the single-spin asymmetry for pi0pi^0 inclusive production in pp collisions?

    Full text link
    The cross section data for π0\pi^0 inclusive production in pppp collisions is considered in a rather broad kinematic region in energy s\sqrt{s}, Feynman variable xFx_F and transverse momentum pTp_T. The analysis of these data is done in the perturbative QCD framework at the next-to-leading order. We find that they cannot be correctly described in the entire kinematic domain and this leads us to conclude that the single-spin asymmetry, ANA_N for this process, observed several years ago at FNAL by the experiment E704 and the recent result obtained at BNL-RHIC by STAR, are two different phenomena. This suggests that STAR data probes a genuine leading-twist QCD single-spin asymmetry for the first time and finds a large effect.Comment: text modified, version to be published in Eur. Phys. J. C, 6 pages, 5 figure

    BIM-based LCSA application in early design stages using IFC

    Get PDF
    Life Cycle Sustainability Assessment (LCSA) is an integrated method that combines environmental, economic, and social assessments. Its methodological development remains under discussion, mainly regarding the building design. This paper aims to provide a systematic, interoperable, and open-source approach towards implementing LCSA in Building Information Modelling (BIM) in five steps. A harmonized data structure that enriches BIM objects is proposed. Automation in the principal evaluation step is provided by integrating new parameters into the current Industry Foundation Classes (IFC4). A Dynamo script verifies its utility in a case study in Spain using real-time calculations and visualizations. Two alternative structural systems are assessed, and identification is made of the lowest CO2 emitter, the lowest cost, and the most beneficial system for local employment. The approach can be employed to evaluate other indicators and building systems in other countries. Challenges and limitations in the standardization and harmonization of the three dimensions are identified

    Thermodynamics of the incommensurate state in Rb_2WO_4: on the Lifshitz point in A`A``BX_4 compounds

    Full text link
    We consider the evolution of the phase transition from the parent hexagonal phase P63/mmcP6_{3}/mmc to the orthorhombic phase PmcnPmcn that occurs in several compounds of AABX4A'A''BX_{4} family as a function of the hcp lattice parameter c/ac/a. For compounds of K2SO4K_{2}SO_{4} type with c/ac/a larger than the threshold value 1.26 the direct first-order transition PmcnP63/mmcPmcn-P6_{3}/mmc is characterized by the large entropy jump Rln2Rln2. For compounds Rb2WO4Rb_{2}WO_{4}, K2MoO4K_{2}MoO_{4}, K2WO4K_{2}WO_{4} with c/a<1.26c/a<1.26 this transition occurs via an intermediate incommensurate (Inc)(Inc) phase. DSC measurements were performed in Rb2WO4Rb_{2}WO_{4} to characterize the thermodynamics of the PmcnIncP63/mmcPmcn-Inc-P6_{3}/mmc transitions. It was found that both transitions are again of the first order with entropy jumps 0.2Rln2and0.2Rln2 and 0.3Rln2.Therefore,at. Therefore, at c/a ~ 1.26the the A'A''BX_{4}compoundsrevealanunusualLifshitzpointwherethreefirstordertransitionlinesmeet.Weproposethecouplingofcrystalelasticitywith compounds reveal an unusual Lifshitz point where three first order transition lines meet. We propose the coupling of crystal elasticity with BX_{4}$ tetrahedra orientation as a possible source of the transitions discontinuity.Comment: 13 pages,1 Postscript figure. Submitted as Brief Report to Phys. Rev. B, this paper reports a new work in Theory and Experiment, directed to Structural Phase Transition

    Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking

    Get PDF
    Novel therapeutics designed to target the polymeric matrix of biofilms requires innovative techniques to accurately assess their efficacy. Here, multiple particle tracking (MPT) was developed to characterize the physical and mechanical properties of antimicrobial resistant (AMR) bacterial biofilms and to quantify the effects of antibiotic treatment. Studies employed nanoparticles (NPs) of varying charge and size (40–500 nm) in Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA) biofilms and also in polymyxin B (PMB) treated Escherichia coli biofilms of PMB-sensitive (PMBSens) IR57 and PMB-resistant (PMBR) PN47 strains. NP size-dependent and strain-related differences in the diffusion coefficient values of biofilms were evident between PAO1 and MRSA. Dose-dependent treatment effects induced by PMB in PMBSens E. coli biofilms included increases in diffusion and creep compliance (P < 0.05), not evident in PMB treatment of PMBR E. coli biofilms. Our results highlight the ability of MPT to quantify the diffusion and mechanical effects of antibiotic therapies within the AMR biofilm matrix, offering a valuable tool for the pre-clinical screening of anti-biofilm therapies

    Generational Differences and Determinants of Purchase Behavior towards Sustainable Clothing in a Developing Economy

    Get PDF
    The fashion industry contributes significant plastic pollution and greenhouse gas emissions globally. One approach to minimize the industry’s environmental impact is through a shift to sustainable clothing. This study determined the predictors of purchase behavior towards sustainable clothing in a developing economy, which is the Philippines. Furthermore, this paper compared Filipinos from Generations X and Z. Results of a multiple regression analysis from a sample of 212 participants in an online survey showed that generation and environmental knowledge predicted the purchase of sustainable clothing. Moreover, Gen Z scored higher in environmental knowledge and purchase of sustainable clothing. The findings provide insights on increasing the usage of sustainable clothing, which can significantly reduce the environmental impact of the fashion industry

    An adaptive grid refinement strategy for the simulation of negative streamers

    Get PDF
    The evolution of negative streamers during electric breakdown of a non-attaching gas can be described by a two-fluid model for electrons and positive ions. It consists of continuity equations for the charged particles including drift, diffusion and reaction in the local electric field, coupled to the Poisson equation for the electric potential. The model generates field enhancement and steep propagating ionization fronts at the tip of growing ionized filaments. An adaptive grid refinement method for the simulation of these structures is presented. It uses finite volume spatial discretizations and explicit time stepping, which allows the decoupling of the grids for the continuity equations from those for the Poisson equation. Standard refinement methods in which the refinement criterion is based on local error monitors fail due to the pulled character of the streamer front that propagates into a linearly unstable state. We present a refinement method which deals with all these features. Tests on one-dimensional streamer fronts as well as on three-dimensional streamers with cylindrical symmetry (hence effectively 2D for numerical purposes) are carried out successfully. Results on fine grids are presented, they show that such an adaptive grid method is needed to capture the streamer characteristics well. This refinement strategy enables us to adequately compute negative streamers in pure gases in the parameter regime where a physical instability appears: branching streamers.Comment: 46 pages, 19 figures, to appear in J. Comp. Phy

    Engineering paper tubes to improve winding performance of various materials

    Get PDF
    Over the past 10 years, Sonoco has conducted fundamental, solid mechanics research concerning structural behavior of spirally wound paper tubes. The scope of this program has included experimental, numerical, and analytical mechanics approaches as documented in references (1-7). For recent non-linear finite element research, we have used ABAQUS and developed user-defined material subroutines. These subroutines feature a proprietary 3D constitutive model for paperboard. The model uses non-linear stress-strain properties of Sonoco paperboard measured in 3 principle directions. An important research objective is to develop innovative tube designs that enable our customers to improve their winding operations. To achieve this objective, we have developed several patented test devices that measure tube properties fundamental to winding applications. Tests to measure core radial stiffness on the inside and outside (Ec) with respect to an external pressure and radial strength have been developed. This paper describes the test methods and presents data to verify mechanics research findings by way of two core applications. These are examples of where cores were engineered using mechanics technology to improve winding capability: (1) development of an extremely high Ec core for winding low friction, coated aluminum, and (2) cores for winding textile yarns based on radial stiffness of inside diameter

    Gelatin–chitosan–PVA hydrogels and their application in agriculture

    Get PDF
    This work demonstrated the ability of a fabrication process in the preparation of gelatin-chitosan-PVA hydrogels for potential agricultural applications. The hydrogels showed a dense, tridimensional, interconnected and reticulated structure that was more evident in the hydrogel loaded with inulin. The hydrogels showed a water absorption capacity of ≤12 times its mass. FTIR and light microscopy demonstrated that the hydrogels were biodegradable. The percentage of degradation of hydrogels in inoculated soil was higher than in sterile soil using the soil burial test. Hydrogel loaded with inulin was found to be capable of inducing resistance in chili plants against Phytophthora capsici.ITESO, A.C
    corecore