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Tank-binding kinase 1 (TBK1) serves as an important component of multiple signaling pathways.
While the majority of research on TBK1 has focused on its role in innate immunity, critical functions
for TBK1 in autophagy and cancer are beginning to emerge. This review highlights recent structural
and biochemical studies that provide insights into the molecular mechanism of TBK1 activation and
summarizes what is known to date about TBK1 substrate selection. Growing evidence suggests that
both processes rely on TBK1 subcellular localization, with a variety of adaptor proteins each direct-
ing TBK1 to discrete signaling complexes for different cellular responses. Further study of TBK1-
mediated pathways will require careful consideration of TBK1 mechanisms of activation and spec-
ificity for proper dissection of these distinct signaling cascades.
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Introduction to TBK1 function and molecular architecture

Living cells use complex signaling networks to monitor and re-
spond to their environment. This cellular circuitry relies on special-
ized ‘‘node’’ proteins that can receive upstream inputs and
modulate downstream outputs in order to transduce signals [1].
These proteins are typically enzymes (e.g. kinases/phosphatases,
ubiquitin ligases/de-ubiquitinases and nucleotide exchange fac-
tors), which when activated by inputs, use their catalytic activity
to output signal to downstream substrates. In addition to their cat-
alytic subunits, node proteins often contain discrete protein–pro-
tein interaction domains or motifs that mediate associations with
other members of the pathway and/or regulate their signaling
behavior [2,3]. Thus, these accessory domains can act as gating ele-
ments for node proteins much in the same way components like
transistors help control current flow (output) in response to an ap-
plied voltage (input) in electronic circuitry. Indeed, the presence of
multiple interaction domains can lead to complex switch behavior
for these proteins that can be critical for proper signal transduction
and cellular response [4–6].

View metadata, citation and similar papers at core.ac.uk
TBK1 functions as a key node protein in several cell signaling
pathways, including innate immune response [7,8], xenophagic
elimination of bacteria [9–13] and, under pathological conditions,
cell growth and proliferation [8,14–18]. TBK1 is composed of a ki-
nase domain (KD) that houses its catalytic activity and three acces-
sory/regulatory elements: a ubiquitin-like domain (ULD), a
dimerization domain (DD) and a small protein interaction module
at the C-terminus that we term the adaptor-binding (AB) motif
[19,20]. Recent structural studies of TBK1 and the related kinase,
IKKb, reveal a common domain architecture for these kinases
[21,22]. Together, the KD, ULD and DD form a joint, three-way
interface that, in the context of obligate dimerization, positions
the kinase active sites facing away from one another (Fig. 1). This
configuration strongly disfavors productive kinase–kinase contact
within the dimer, thereby limiting TBK1 autophosphorylation
and activation in the absence of upstream signaling.

pro
TBK1 activation is primarily controlled by localization

Upon pathway stimulation, TBK1 is recruited to signaling com-
plexes via its AB motif [23,24]. Here local clustering of TBK1 mol-
ecules can allow interdimer KD interactions that lead to trans-
autophosphorylation. As observed in the crystal structure of a
TBK1 fragment comprising the KD and ULD, neighboring TBK1
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Fig. 1. Proposed mechanism of TBK1 trans-autophosphorylation. TBK1 forms stable homodimers, with each protomer (one colored blue and one colored tan) consisting of a
KD, ULD, DD and AB motif. The tripartite KD-ULD-DD interface within each TBK1 protomer fixes the kinase active sites facing away from one another in the context of the
dimer (TBK1 ‘‘OFF’’). Binding of the AB motif to adaptor molecules (e.g. TANK, SINTBAD, NAP1) recruits TBK1 to distinct signaling complexes when upstream pathways are
stimulated. This results in high local concentrations of TBK1, which facilitates interdimer interactions that enable autophosphorylation and activation of the KD. Specifically,
activation loop swapping—observed between neighboring KDs within the asymmetric unit of a crystal lattice—provides important structural elements required for an active
kinase conformation (i.e. docking of the ‘‘EF’’ helix onto the C-terminal lobe of the adjacent KD). These interactions also place the activation residue, Ser172, in close proximity
to the catalytic Asp135 residue (D135N; dark pink) of the neighboring KD. Once activated, pSer172-TBK1 can then rapidly phosphorylate the remaining TBK1 pool, to form
fully activated kinase dimers (TBK1 ‘‘ON’’). Figure adapted from Ma et al. 2012.
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molecules can interact via an activation loop-swapped conforma-
tion (Fig. 1) [21]. These interactions serve to both supply critical
structural elements/contacts required to achieve an active kinase
conformation, as well as place the activation segment within the
catalytic cleft of the adjacent KD for phosphotransfer to the activa-
tion residue, Ser172. Similar activation segment swapping has also
been observed in structures from other kinase families, where
transient kinase–kinase interactions facilitate trans-autophospho-
rylation events [25–27]. Yet, unlike these other kinases (e.g.
DAP3K, SLK, LOK and CHK2), which appear to phosphorylate their
non-consensus site activation loop sequences only in the context of
the loop-swapped conformation, activated TBK1 also readily phos-
phorylates its activation loop sequence as a classical substrate [21].
Therefore, while kinetic analyses suggest that the initial loop-
swapped phosphorylation mechanism is relatively slow, once acti-
vated TBK1 is produced, it can rapidly activate the remaining pool
of unphosphorylated TBK1 [21].

Given the robust autophosphorylation capabilities of the TBK1
KD, important regulatory mechanisms are in place to ensure that
TBK1 does not improperly fire in the absence of pathway stimula-
tion. As highlighted above, localization plays a key role in the acti-
vation of this node protein; TBK1 is inactive until adaptor proteins
recruit it to signaling complexes where it can be autophosphory-
lated due to high local concentration [28], or phosphorylated by
other kinases [29] localized to the same molecular scaffold. In
terms of electronic circuitry, TBK1 is thus analogous to a toggle
switch. When expressed at endogenous levels, TBK1 requires the
AB motif and upstream signaling for recruitment and activation.
However, TBK1 overexpression can override this localization-based
regulation, leading to activation in the absence of a competent AB
motif or pathway stimulus [23].

Additionally, the ULD and DD also serve to autoinhibit the KD.
As illustrated in Fig. 1, the structure of the TBK1 dimer effectively
‘‘ties’’ the KD back-to-back with itself, thereby limiting autophos-
phorylation [21,22]. Indeed, autoinhibition of catalytic domains
by accessory domains/motifs is actually a common gating behavior
observed for node proteins. Often the regulatory elements will ste-
rically block the enzyme active site (e.g. SH2-containing phospha-
tase 2 and Twitchin kinase) [30,31], or make intramolecular
interactions that lock the enzyme in an inactive conformation
(e.g. Src and c-Abl kinases) [32–34]. Although the TBK1 ULD and
DD do not physically occlude the kinase active site or allosterically
control the catalytic competency of the KD, these accessory do-
mains do act to autoinhibit TBK1 by restricting self-associations
that lead to autophosphorylation of the TBK1 activation loop. Con-
sistent with this model of conformational control, TBK1 constructs
lacking the DD were shown to accumulate substantially higher lev-
els of Ser172 phosphorylation during expression and purification
than full-length TBK1 dimer despite the fact that these dimeriza-
tion-defective variants were expressed at much lower levels and,
moreover, were co-expressed with a phosphatase to limit pSer172
modification [21]. Thus, conformational regulation provides an
additional layer of control to TBK1 activation.

TBK1 substrate specificity is also likely driven by localization

Once Ser172 is phosphorylated, the TBK1 activation loop folds
back onto the C-terminal lobe of the KD to complete the apparent
binding site for polypeptide substrates [21]. The composition of
this site (depicted by electrostatic surface representation in
Fig. 2a) suggests that TBK1 would favor a hydrophobic residue at
the P + 1 position (where P0 is the site of modification). Indeed,
the TBK1 activation loop sequence, which is rapidly phosphory-
lated by activated TBK1, contains a leucine at this location [21].
Comparison of 80 published TBK1 substrate sequences (Fig. 2b
and Supplementary Table S1) finds that hydrophobic residues
comprise the P + 1 position in �70% of the substrates; however,
residues such as serine, proline, glutamine and aspartate are also
tolerated at this site. Aside from this seeming preference for hydro-
phobic sidechains at P + 1, there is little sequence conservation sur-
rounding the phospho-site of TBK1 substrates. Previously reported
consensus motifs flanking the P0 serine/threonine residue (Fig. 2b)
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Fig. 2. Kinases and substrate specificity. (A) Electrostatic surface representation of the TBK1 KD catalytic cleft bound to a modeled peptide substrate (PDB IDs 4EUU and 1ATP,
respectively). The active kinase structure suggests that TBK1 would prefer a hydrophobic residue in the P + 1 position of the substrate (shown as an ILE residue). (B) A logo
plot of TBK1 substrate sequences (n = 80) reveals minimal conservation of local phospho-site sequences. Published TBK1 phospho-site ‘‘consensus’’ sequences derived from
narrower native substrate alignments or phosphorylation studies using peptide libraries are listed below for comparison. (C) Kinases use a variety of mechanisms to achieve
substrate specificity, ranging from local phospho-site sequence recognition to temporal expression level. Two cell-cycle kinases, CDK2 and Aurora-A, show varying
dependency on local consensus-site identity (right, logo plots) and utilize different combinations of specificity determinants to achieve substrate selection. TBK1 appears to
use localization to guide substrate specificity. All sequence logos generated using WebLogo 3.3.
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[35,36] appear to fall off when comparing a large panel of natural
TBK1 substrates.

These findings imply that TBK1 substrate selectivity does not
depend greatly on local phospho-site sequences of downstream
targets. In fact, kinase specificity can be determined by a number
of other molecular mechanisms, including distal docking-site bind-
ing of substrates, co-localization with substrates and temporal reg-
ulation of kinase expression level (as reviewed in Bhattacharyya
et al. 2006 [3] and Ubersax and Ferrell 2007 [37]). Fig. 2c illustrates
how these different kinase specificity determinants can be com-
bined to establish substrate selectivity for two distinct cell-cycle
kinases, cyclin-dependent kinase 2 (CDK2) and Aurora-A kinase,
in comparison to TBK1.

Sequence alignments of CDK2 substrates (Supplementary
Table S2) show that, unlike TBK1, CDK2 has a strong, local-se-
quence specificity surrounding its substrate phospho-sites. CDK2
vastly prefers proline in the P + 1 position while it favors, albeit
to a lesser degree, basic residues in the P + 3 position (Fig. 2c, top
logo plot) [38,39]. Moreover, the formation of CDK2-cyclin com-
plexes helps guide target selection by extending substrate recogni-
tion sites onto the adjacent surface of the bound cyclin subunit
[40–45]. To date, these kinds of distal docking-site interactions
have not been observed for TBK1-substrate pairs. Although the re-
lated kinase IKKb utilizes its ULD and DD subunits to restrict phos-
pho-site selection on its substrate, IjBa [22], enzymatic analysis of
purified TBK1 constructs reveals that removal of these accessory
domains does not seem to alter the specificity of TBK1 for sites
on two disparate macromolecular substrates [21]. TBK1 substrate
specificity therefore appears to be maintained wholly within the
KD; yet, it is possible that additional substrate-docking sites exist
on the TBK1 KD apart from binding at the catalytic cleft. Many ki-
nases contain secondary docking sites on their catalytic domain—
the functional equivalents of ‘‘exosites’’ in proteases—that interact
with conserved substrate motifs for proper target recognition.
While such interactions have not been identified for TBK1 and its
diverse array of substrates (see Table 1), it is formally possible that
they exist. In a similar vein, it is also conceivable that TBK1 com-
plexes may help direct substrate selection akin to the CDK2-cyclin
complex described above. Continued research on TBK1-substrate
interactions will hopefully clarify whether either of these mecha-
nisms is relevant in TBK1 target selection.

Still, these are not the only specificity determinants used by
kinases. Temporal regulation of substrate or kinase expression
levels can also help define kinase specificity [37]. In the case of
CDK2, the kinase concentration remains fairly constant, but vari-
ations in cyclin levels throughout the cell cycle serve to drive
CDK2 specificity for different targets [46–48]. By contrast, Aur-
ora-A kinase expression levels are directly modulated by tran-
scriptional upregulation in G2 and M phases [49], where its
activity controls spindle assembly and stability, and then reduced



Table 1
TBK1 substrates.a (See above-mentioned references for further information.)

a Substrates that contain experimentally verified TBK1 phospho-sites are listed and grouped by general output pathway: immune response/inflammation, autophagy,
proliferation/growth and insulin signaling. All substrates are human proteins except for murine DDX3X (mDDX3X), NIK (mNIK) and LRRK2 (mLRRK2) proteins. Act1, NF-jB
activator 1; cRel, proto-oncogene; IjBa, inhibitory jBa protein; IKKa, inhibitor of jB kinase alpha; IKKb, inhibitor of jB kinase beta; IRF3, interferon regulatory factor 3; IRF7,
interferon regulatory factor 7; NEMO, NFjB essential modulator; mNIK, murine NFjB-inducing kinase; p65/RelA, NFjB p65/RelA subunit; PELI1, Pellino-1; STAT6, signal
transducer and activator of transcription 6; STING, stimulator of IFN genes; TANK, TRAF-associated NF-jB activator; TBK1, Tank-binding kinase 1; TRIM27, Tripartite motif-
containing protein 27; XIAP, X-linked inhibitor of apoptosis protein; mLRRK2, murine leucine-rich repeat kinase 2; OPTN, Optineurin; p62, Sequestosome-1; Akt, Akt-1; Sec5,
Exocyst complex component 2; IR, insulin receptor.

b Detection methods are listed according to the particular phospho-site, with the corresponding reference(s) in the adjacent column. MS denotes mass spec; WB denotes
Western blot; IP denotes immunoprecipitation.
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via proteasomal degradation later in mitosis [50–52]. Aurora-A
also shows a moderate preference for basic residues in the P�2
and P�3 positions (Fig. 2c, bottom log plot and Supplementary
Table S3) [53]; however, much of its specificity is derived from
its recruitment to the mitotic spindle via interactions with the
microtubule-binding protein, TPX2 [54–56].

Although TBK1 levels do not appear to fluctuate like Aurora-A
[7], there is compelling evidence that TBK1 may use localization
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as a key specificity determinant. Proteomic studies have demon-
strated that TBK1 forms separate complexes with adaptor proteins
such as TANK, SINTBAD and NAP1—interactions that lead to differ-
ent subcellular localization of TBK1 [7,23,57]. Immunofluorescence
microscopy reveals diffuse perinuclear staining for TANK while
SINTBAD and NAP1 are characterized by discrete foci. Interestingly,
co-expression of TBK1 with NAP1 changes the cellular distribution
of TBK1 from diffusely cytosolic to punctate, with foci that largely
co-localize with NAP1 [23]. These adaptors compete for binding to
the C-terminal AB motif of TBK1 to form mutually exclusive com-
plexes with the kinase. Because the adaptors in turn have unique
binding partners, they serve to recruit TBK1 to distinct signaling
complexes, thereby directing TBK1 activity towards specific down-
stream pathways (Fig. 3) [7]. For example, TANK–TBK1 interactions
appear to be required for proper IFN-b production in response to
viral infection or poly(I:C) stimulation [23] whereas SINTBAD and
NAP1 are important for TBK1-mediated elimination of cytosolic
bacterial pathogens via selective autophagy [9].

The discovery of new TBK1 adaptors such as TBK1-associated
protein in endolysosomes (TAPE) [58] and IFN-induced protein
with tetratricopeptide repeats 3 (IFIT3), which bridges TBK1 to
the mitochondrial anti-viral signaling (MAVS) protein [59], further
support the concept of subcellular localization as part of TBK1 sig-
naling. Moreover, TBK1 ubiquitination and binding to NEMO [60]
can be likened to the scaffolding/localization-driven substrate
specificity NEMO dictates for IKKb, as shown by Schröfelbauer
et al. [61]. Indeed, in light of the critical role of K63-linked ubiqui-
tin in TBK1-mediated pathways [62–72], one can imagine how
ubiquitin chains might provide a platform for the assembly of
TBK1 signaling complexes given that many TBK1 adaptors and sub-
strates bind ubiquitin (e.g. NEMO, SINTBAD, NAP1, NDP52, and
OPTN) [9,11,60]. These findings, taken together with the lack of a
strong phospho-site consensus sequence or apparent secondary
docking sites for TBK1, implies that TBK1 localization is crucial,
not only for its activation, but for its substrate specificity, as well.
Recent evidence for the assembly of large, stimulus-specific, TBK1
signaling platforms (functional protein aggregates and clusters on
membrane compartments) supports this model of localized TBK1
activation and signal propagation [28,69,73].

Certainly, this mode of target selection is by no means a novel
concept in the kinase field. Co-localization or ‘‘co-recruitment’’ of
kinases and substrates is increasingly cited as a means of driving
kinase specificity [74]. Recent work has even shown that recruit-
ment strategies can override catalytic domain-substrate interac-
tions in determining kinase targets [75]. Finally, it is important
to note that the adaptor-mediated recruitment of TBK1 to distinct
signaling complexes/pathways described above does not necessar-
ily rely on exact scaffolding geometries of TBK1 and substrates for
proper signal transduction. Engineered localization strategies and
mathematical modeling suggest that simply increasing the
encounter frequency between a kinase and substrate by raising
their local concentrations is sufficient to propagate signal [76–
78]. Such a mechanism would allow TBK1 to readily accommodate
the wide array of disparate substrates that it phosphorylates; a
growing list that includes other kinases, transcription factors, ubiq-
uitin (Ub) E3 ligases and adaptor proteins (see Table 1).

The complexity of TBK1 signaling pathways and implications
for unraveling TBK1-related pathologies

Perhaps more striking than the sheer number or functional vari-
ety of TBK1 substrates is the diversity of the broader signaling net-
works that utilize TBK1 as a node protein, which include immune
response, inflammation, autophagy, cell proliferation and growth
and insulin signaling (Fig. 3). To date, the majority of TBK1 research
has focused on the role of the kinase in innate immune pathways
that lead to type 1 interferon response, such as Toll-like receptor
(e.g. TLR3 and TLR4) and cytosolic viral DNA/RNA receptor (e.g.
RIG-I and MDA5) signaling [58,59,67,69,71,73,79–92]. As men-
tioned above, studies have also defined a role for TBK1 in the deg-
radation of invasive bacteria, via ubiquitin-mediated clearance
mechanisms [9–12]. While this latter pathway also falls under
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the umbrella of cellular response to pathogen detection, it ulti-
mately engages autophagy machinery to eliminate cytosolic bacte-
ria (xenophagy) as opposed to inducing transcriptional
upregulation of interferons and inflammation to combat infection.
Intriguingly, TBK1 has very recently been implicated as an up-
stream regulator in the autophagic clearance of protein aggregates
associated with glaucoma [93] and various neurodegenerative dis-
eases [94], as well as a critical component of the elevated basal
autophagy observed in KRAS-dependent non-small cell lung cancer
(NSCLC) [17]. These studies suggest that a better understanding of
TBK1’s role in autophagy may prove important in elucidating the
molecular mechanisms of TBK1-related pathologies—a key step
for evaluating and potentially exploiting TBK1 as a therapeutic
target.

Indeed, much remains unknown as to how TBK1 is activated
and what substrates are targeted under pathological conditions;
however, as in normal TBK1 signaling, there does appear to be
some degree of pathway selection involved. For example, although
TBK1 activity is essential for certain KRAS-driven cancers, there is
no evidence of IRF3 activation in these cancer cell lines [16]. Thus,
TBK1 is not globally activated against all potential substrates in
these cells, but instead appears to be directed towards specific
downstream targets in this disease state. What these targets are,
and how TBK1 finds them is not fully understood. Similarly, while
TBK1 has been shown to activate the oncogenic AKT kinase, it is
unclear what upstream signals would precipitate this interaction
[15,18,95]. Given the potential for TBK1 auto-activation upon
over-expression and the fact that transient transfection stimulates
TBK1-mediated innate immune pathways, common experimental
approaches may prove inadequate in properly dissecting these dis-
tinct signaling cascades. To this end, recent advances in TBK1
inhibitor specificity provide improved tools to address these exper-
imental concerns [29,36,96,97]. If careful attention is paid to how
future studies are conducted and analyzed, continued research
on these emerging pathways will hopefully yield key insights into
TBK1 biology and establish important inroads into treating TBK1-
related diseases.
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