The evolution of negative streamers during electric breakdown of a
non-attaching gas can be described by a two-fluid model for electrons and
positive ions. It consists of continuity equations for the charged particles
including drift, diffusion and reaction in the local electric field, coupled to
the Poisson equation for the electric potential. The model generates field
enhancement and steep propagating ionization fronts at the tip of growing
ionized filaments. An adaptive grid refinement method for the simulation of
these structures is presented. It uses finite volume spatial discretizations
and explicit time stepping, which allows the decoupling of the grids for the
continuity equations from those for the Poisson equation. Standard refinement
methods in which the refinement criterion is based on local error monitors fail
due to the pulled character of the streamer front that propagates into a
linearly unstable state. We present a refinement method which deals with all
these features. Tests on one-dimensional streamer fronts as well as on
three-dimensional streamers with cylindrical symmetry (hence effectively 2D for
numerical purposes) are carried out successfully. Results on fine grids are
presented, they show that such an adaptive grid method is needed to capture the
streamer characteristics well. This refinement strategy enables us to
adequately compute negative streamers in pure gases in the parameter regime
where a physical instability appears: branching streamers.Comment: 46 pages, 19 figures, to appear in J. Comp. Phy