941 research outputs found

    Modeling of droplet breakup in a microfluidic T--shaped junction with a phase--field model

    Full text link
    A phase--field method is applied to the modeling of flow and breakup of droplets in a T--shaped junction in the hydrodynamic regime where capillary and viscous stresses dominate over inertial forces, which is characteristic of microfluidic devices. The transport equations are solved numerically in the three--dimensional geometry, and the dependence of the droplet breakup on the flow rates, surface tension and viscosities of the two components is investigated in detail. The model reproduces quite accurately the phase diagram observed in experiments performed with immiscible fluids. The critical capillary number for droplet breakup depends on the viscosity contrast, with a trend which is analogous to that observed for free isolated droplets in hyperbolic flow

    Editorial

    Get PDF

    Transdermal microconduits by microscission for drug delivery and sample acquisition

    Get PDF
    BACKGROUND: Painless, rapid, controlled, minimally invasive molecular transport across human skin for drug delivery and analyte acquisition is of widespread interest. Creation of microconduits through the stratum corneum and epidermis is achieved by stochastic scissioning events localized to typically 250 Όm diameter areas of human skin in vivo. METHODS: Microscissioning is achieved by a limited flux of accelerated gas: 25 Όm inert particles passing through the aperture in a mask held against the stratum corneum. The particles scize (cut) tissue, which is removed by the gas flow with the sensation of a gentle stream of air against the skin. The resulting microconduit is fully open and may be between 50 and 200 Όm deep. RESULTS: In vivo adult human tests show that microconduits reduce the electrical impedance between two ECG electrodes from approximately 4,000 Ω to 500 Ω. Drug delivery has been demonstrated in vivo by applying lidocaine to a microconduit from a cotton swab. Sharp point probing demonstrated full anaesthesia around the site within three minutes. Topical application without the microconduit required approximately 1.5 hours. Approximately 180 Όm deep microconduits in vivo yielded blood sample volumes of several Όl, with a faint pricking sensation as blood enters tissue. Blood glucose measurements were taken with two commercial monitoring systems. Microconduits are invisible to the unaided eye, developing a slight erythematous macule that disappears over days. CONCLUSION: Microscissioned microconduits may provide a minimally invasive basis for delivery of any size molecule, and for extraction of interstitial fluid and blood samples. Such microconduits reduce through-skin electrical impedance, have controllable diameter and depth, are fully open and, after healing, no foreign bodies were visible using through-skin confocal microscopy. In subjects to date, microscissioning is painless and rapid

    Predicting phase equilibria in polydisperse systems

    Full text link
    Many materials containing colloids or polymers are polydisperse: They comprise particles with properties (such as particle diameter, charge, or polymer chain length) that depend continuously on one or several parameters. This review focusses on the theoretical prediction of phase equilibria in polydisperse systems; the presence of an effectively infinite number of distinguishable particle species makes this a highly nontrivial task. I first describe qualitatively some of the novel features of polydisperse phase behaviour, and outline a theoretical framework within which they can be explored. Current techniques for predicting polydisperse phase equilibria are then reviewed. I also discuss applications to some simple model systems including homopolymers and random copolymers, spherical colloids and colloid-polymer mixtures, and liquid crystals formed from rod- and plate-like colloidal particles; the results surveyed give an idea of the rich phenomenology of polydisperse phase behaviour. Extensions to the study of polydispersity effects on interfacial behaviour and phase separation kinetics are outlined briefly.Comment: 48 pages, invited topical review for Journal of Physics: Condensed Matter; uses Institute of Physics style file iopart.cls (included

    Mechanisms for the Intracellular Manipulation of Organelles by Conventional Electroporation

    Get PDF
    Conventional electroporation (EP) changes both the conductance and molecular permeability of the plasma membrane (PM) of cells and is a standard method for delivering both biologically active and probe molecules of a wide range of sizes into cells. However, the underlying mechanisms at the molecular and cellular levels remain controversial. Here we introduce a mathematical cell model that contains representative organelles (nucleus, endoplasmic reticulum, mitochondria) and includes a dynamic EP model, which describes formation, expansion, contraction, and destruction for the plasma and all organelle membranes. We show that conventional EP provides transient electrical pathways into the cell, sufficient to create significant intracellular fields. This emerging intracellular electrical field is a secondary effect due to EP and can cause transmembrane voltages at the organelles, which are large enough and long enough to gate organelle channels, and even sufficient, at some field strengths, for the poration of organelle membranes. This suggests an alternative to nanosecond pulsed electric fields for intracellular manipulations.National Science Foundation (U.S.) (NSF Graduate Research Fellowship)National Institutes of Health (U.S.) (grant No. R01-GM63857)Aegis Industries, Inc

    Thirty Years with EoS/G<sup>E</sup> Models - What Have We Learned?

    Get PDF

    Visualization of plasmid delivery to keratinocytes in mouse and human epidermis

    Get PDF
    The accessibility of skin makes it an ideal target organ for nucleic acid-based therapeutics; however, effective patient-friendly delivery remains a major obstacle to clinical utility. A variety of limited and inefficient methods of delivering nucleic acids to keratinocytes have been demonstrated; further advances will require well-characterized reagents, rapid noninvasive assays of delivery, and well-developed skin model systems. Using intravital fluorescence and bioluminescence imaging and a standard set of reporter plasmids we demonstrate transfection of cells in mouse and human xenograft skin using intradermal injection and two microneedle array delivery systems. Reporter gene expression could be detected in individual keratinocytes, in real-time, in both mouse skin as well as human skin xenografts. These studies revealed that non-invasive intravital imaging can be used as a guide for developing gene delivery tools, establishing a benchmark for comparative testing of nucleic acid skin delivery technologies

    Ultrasound-Enhanced Drug Transport and Distribution in the Brain

    Get PDF
    Drug delivery in the brain is limited by slow drug diffusion in the brain tissue. This study tested the hypothesis that ultrasound can safely enhance the permeation of drugs in the brain. In vitro exposure to ultrasound at various frequencies (85 kHz, 174 kHz, and 1 MHz) enhanced the permeation of tritium-labeled molecules with molecular weight up to 70 kDa across porcine brain tissue. A maximum enhancement of 24-fold was observed at 85 kHz and 1,200 J/cm2. In vivo exposure to 1-MHz ultrasound further demonstrated the ability of ultrasound to facilitate molecule distribution in the brain of a non-human primate. Finally, ultrasound under conditions similar to those used in vivo was shown to cause no damage to plasmid DNA, siRNA, adeno-associated virus, and fetal rat cortical neurons over a range of conditions. Altogether, these studies demonstrate that ultrasound can increase drug permeation in the brain in vitro and in vivo under conditions that did not cause detectable damage
    • 

    corecore