97 research outputs found

    Ecosystem function and particle flux dynamics across the Mackenzie Shelf (Beaufort Sea, Arctic Ocean): an integrative analysis of spatial variability and biophysical forcings

    Get PDF
    A. Forest et al. -- 78 pages, 18 figures, 6 tablesA better understanding of how environmental changes affect organic matter fluxes in Arctic marine ecosystems is sorely needed. Here, we combine mooring times-series, ship-based measurements and remote-sensing to assess the variability and forcing factors of vertical fluxes of particulate organic carbon (POC) across the Mackenzie Shelf in 2009. We developed a geospatial model of these fluxes to proceed to an integrative analysis of their biophysical determinants in summer. Flux data were obtained with sediment traps and via a regional empirical algorithm applied to particle size-distributions (17 classes from 0.08–4.2 mm) measured by an Underwater Vision Profiler 5. Redundancy analyses and forward selection of abiotic/biotic parameters, linear trends, and spatial structures (i.e. principal coordinates of neighbor matrices, PCNM), were conducted to partition the variation of POC flux size-classes. Flux variability was explained at 69.5 % by the addition of a linear temporal trend, 7 significant PCNM and 9 biophysical variables. The interaction of all these factors explained 27.8 % of the variability. The first PCNM canonical axis (44.4 % of spatial variance) reflected a shelf-basin gradient controlled by bottom depth and ice concentration (p < 0.01), but a complex assemblage of fine-to-broad scale patterns was also identified. Among biophysical parameters, bacterial production and northeasterly wind (upwelling-favorable) were the two strongest explanatory variables (r2 cum. = 0.37), suggesting that bacteria were associated with sinking material, which was itself partly linked to upwelling-induced productivity. The second most important spatial structure corresponded actually to the two areas where shelf break upwelling is known to occur under easterlies. Copepod biomass was negatively correlated (p < 0.05) with vertical POC fluxes, implying that metazoans played a significant role in the regulation of export fluxes. The low fractal dimension of settling particles (1.26) and the high contribution (~94 %) of fast-sinking small aggregates (<1 mm; 20–30 m d−1) to the mass fluxes suggested that settling material across the region was overall fluffy, porous, and likely resulting from the aggregation of marine detritus, gel-like substances and ballast minerals. Our study demonstrates that vertical POC fluxes in Arctic shelf systems are spatially complex, sensitive to environmental forcings, and determined by both physicochemical mechanisms and food web functioning. In conclusion, we hypothesize that the incorporation of terrestrial matter into the Beaufort Sea food web could be catalyzed by bacteria via the incorporation of dissolved terrestrial carbon liberated through the photo-cleavage and/or hydrolysis of land-derived POC interweaved with marine aggregatesThis work would not have been possible without the professional and enthusiastic assistance of the officers and crew members of the CCGS Amundsen. We express gratitude to L. Prieur and C. Marec for their help in the deployment of the CTD-rosette and for the onboard processing of UVP5 data. We thank J. Martin, J. Gagnon, A. Mignot and M. Gosselin for sharing the chlorophyll data in order to post-calibrate the fluorometer. 5 We thank P. Guillot for the validation of physical data. We thank M. Fortier, K. L´evesque and J. Ehn for the organization of the fieldwork, workshops and for support at sea. This study was conducted as part of the Malina Scientific Program funded by ANR (Agence nationale de la recherche), INSU-CNRS (Institut national des sciences de l’univers – Centre national de la recherche scientifique), CNES (Centre national d’e´tudes spatiales) and ESA (European Space Agency). Additional support from ArcticNet (a Network of Centres of Excellence of Canada) and from the ArcticNet-Imperial Oil Research Collaboration was welcomed and appreciated. The IAEA is grateful to the Government of the Principality of Monaco for the support provided to its Environment Laboratories. This work is a joint contribution to the Malina Project and to the research 15 programs of Que´bec-Oce´an, ArcticNet, the Takuvik Joint U. Laval/CNRS Laboratory, the Arctic in Rapid Transition (ART) Initiative, to the Canada Research Chair on the Response of Marine Arctic Ecosystems to ClimateWarming, and to the Canada Excellence Research Chair (CERC) in Remote Sensing of Canada’s New Arctic FrontierPeer reviewe

    The wineglass effect shapes particle export to the deep ocean in mesoscale eddies

    Get PDF
    Mesoscale eddies in the ocean strongly impact the distribution of planktonic particles, mediating carbon fluxes over ~1/3 of the world ocean. However, mechanisms controlling particle transport through eddies are complex and challenging to measure in situ. Here we show the subsurface distribution of eddy particles funneled into a wineglass shape down to 1000 m, leading to a sevenfold increase of vertical carbon flux in the eddy center versus the eddy flanks, the “wineglass effect”. We show that the slope of the wineglass (R) is the ratio of particle sinking velocity to the radially inward velocity, such that R represents a tool to predict radial particle movement (here 0.05ms�1). A simple model of eddy spindown predicts such an ageostrophic flow concentrating particles in the eddy center. We explore how size-specific particle flux toward the eddy center impacts eddies' biogeochemistry and export fluxes

    A global ocean atlas of eukaryotic genes

    Get PDF
    While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry

    Gene expression changes and community turnover differentially shape the global ocean metatranscriptome

    Get PDF
    Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms

    Global Trends in Marine Plankton Diversity across Kingdoms of Life

    Get PDF
    35 pages, 18 figures, 1 table, supplementary information https://doi.org/10.1016/j.cell.2019.10.008.-- Raw reads of Tara Oceans are deposited at the European Nucleotide Archive (ENA). In particular, newly released 18S rRNA gene metabarcoding reads are available under the number ENA: PRJEB9737. ENA references for the metagenomics reads corresponding to the size fraction < 0.22 μm (for prokaryotic viruses) analyzed in this study are included in Gregory et al. (2019); see their Table S3. ENA references for the metagenomics reads corresponding to the size fraction 0.22-1.6/3 μm (for prokaryotes and giruses) correspond to Salazar et al. (2019) (see https://zenodo.org/record/3473199). Imaging datasets from the nets are available through the collaborative web application and repository EcoTaxa (Picheral et al., 2017) under the address https://ecotaxa.obs-vlfr.fr/prj/412 for regent data, within the 3 projects https://ecotaxa.obs-vlfr.fr/prj/397, https://ecotaxa.obs-vlfr.fr/prj/398, https://ecotaxa.obs-vlfr.fr/prj/395 for bongo data, and within the 2 projects https://ecotaxa.obs-vlfr.fr/prj/377 and https://ecotaxa.obs-vlfr.fr/prj/378 for WP2 data. A table with Shannon values and multiple samples identifiers, plus a table with flow cytometry data split in six groups are available (https://doi.org/10.17632/p9r9wttjkm.1). Contextual data from the Tara Oceans expedition, including those that are newly released from the Arctic Ocean, are available at https://doi.org/10.1594/PANGAEA.875582The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservationTara Oceans (which includes both the Tara Oceans and Tara Oceans Polar Circle expeditions) would not exist without the leadership of the Tara Ocean Foundation and the continuous support of 23 institutes (https://oceans.taraexpeditions.org/). We further thank the commitment of the following sponsors: CNRS (in particular Groupement de Recherche GDR3280 and the Research Federation for the Study of Global Ocean Systems Ecology and Evolution FR2022/Tara Oceans-GOSEE), the European Molecular Biology Laboratory (EMBL), Genoscope/CEA, the French Ministry of Research, and the French Government “Investissements d’Avenir” programs OCEANOMICS (ANR-11-BTBR-0008), FRANCE GENOMIQUE (ANR-10-INBS-09-08), MEMO LIFE (ANR-10-LABX-54), the PSL∗ Research University (ANR-11-IDEX-0001-02), as well as EMBRC-France (ANR-10-INBS-02). Funding for the collection and processing of the Tara Oceans data set was provided by NASA Ocean Biology and Biogeochemistry Program under grants NNX11AQ14G, NNX09AU43G, NNX13AE58G, and NNX15AC08G (to the University of Maine); the Canada Excellence research chair on remote sensing of Canada’s new Arctic frontier; and the Canada Foundation for Innovation. We also thank agnès b. and Etienne Bourgois, the Prince Albert II de Monaco Foundation, the Veolia Foundation, Region Bretagne, Lorient Agglomeration, Serge Ferrari, Worldcourier, and KAUST for support and commitment. The global sampling effort was enabled by countless scientists and crew who sampled aboard the Tara from 2009–2013, and we thank MERCATOR-CORIOLIS and ACRI-ST for providing daily satellite data during the expeditions. We are also grateful to the countries who graciously granted sampling permission. We thank Stephanie Henson for providing ocean carbon export data and are also grateful to the other researchers who kindly made their data available. We thank Juan J. Pierella-Karlusich for advice regarding single-copy genes. C.d.V. and N.H. thank the Roscoff Bioinformatics platform ABiMS (http://abims.sb-roscoff.fr) for providing computational resources. C.B. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement 835067) as well as the Radcliffe Institute of Advanced Study at Harvard University for a scholar’s fellowship during the 2016-2017 academic year. M.B.S. thanks the Gordon and Betty Moore Foundation (award 3790) and the National Science Foundation (awards OCE#1536989 and OCE#1829831) as well as the Ohio Supercomputer for computational support. S.G.A. thanks the Spanish Ministry of Economy and Competitiveness (CTM2017-87736-R), and J.M.G. is grateful for project RT2018-101025-B-100. F.L. thanks the Institut Universitaire de France (IUF) as well as the EMBRC platform PIQv for image analysis. M.C.B., D.S., and J.R. received financial support from the French Facility for Global Environment (FFEM) as part of the “Ocean Plankton, Climate and Development” project. M.C.B. also received financial support from the Coordination for the Improvement of Higher Education Personnel of Brazil (CAPES 99999.000487/2016-03)Peer Reviewe

    Globally consistent quantitative observations of planktonic ecosystems

    Get PDF
    In this paper we review the technologies available to make globally quantitative observations of particles in general—and plankton in particular—in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well as analysis using particle counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next 10 years to move toward our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there, ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries and carbon sequestration

    Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system

    Get PDF
    3rd International Zooplankton Production Symposium, Gijon, SPAIN, MAY 20-23, 2003Identifying and counting zooplankton are labour-intensive and time-consuming processes that are still performed manually. However, a new system, known as ZOOSCAN, has been designed for counting zooplankton net samples. We describe image-processing and the results of (semi)-automatic identification of taxa with various machine-learning methods. Each scan contains between 1500 and 2000 individuals <0.5 min. We used two training sets of about 1000 objects each divided into 8 (simplified) and 29 groups (detailed), respectively. The new discriminant vector forest algorithm, which is one of the most efficient methods, discriminates between the organisms in the detailed training set with all accuracy of 75% at a speed of 2000 items per second. A supplementary algorithm tags objects that the method classified with low accuracy (suspect items), such that they could be checked by taxonomists. This complementary and interactive semi -automatic process combines both computer speed and the ability to detect variations in proportions and grey levels with the human skills to discriminate animals on the basis of small details, such as presence/absence or number of appendages. After this checking process, total accuracy increases to between 80% and 85%. We discuss the potential of the system as a standard for identification, enumeration. and size frequency distribution of net-collected zooplankton. (C) 2004 Published by Elsevier Ltd on behalf of International Council for the Exploration of the Sea
    corecore