37 research outputs found

    A comparison of two tests for filarial antigenemia in areas in Sri Lanka and Indonesia with low-level persistence of lymphatic filariasis following mass drug administration

    Get PDF
    BACKGROUND: Filarial antigen tests are key tools for mapping the distribution of bancroftian filariasis and for detecting areas with persistent infections following mass drug administration (MDA). A recent study showed that the new Alere Filariasis Test Strip (FTS) has better analytical sensitivity than the BinaxNOW Filariasis card test (Card Test) for detecting circulating filarial antigen, and the FTS detected more positive results than the Card Test in a field study performed in a highly endemic area in Liberia. METHODS: The present study compared the performance of the FTS and the Card Test in community surveys that were conducted in southern Sri Lanka and in Indonesia (Central Java) in areas with low-level persistence of LF following multiple rounds of MDA with diethylcarbamazine plus albendazole. The studies were performed in densely populated semi-urban areas where Wuchereria bancrofti is transmitted by Culex quinquefasciatus. RESULTS: Antigenemia rates by FTS were 138 % higher in the Sri Lanka study (43/852 vs. 18/852) and 21 % higher in the Indonesia study (50/778 vs. 41/778) than antigenemia rates by Card Test. Antigenemia rates were significantly higher in males than in females and higher in adults than in children in both study sites. Although overall antigenemia rates and test scores were significantly higher by FTS than by Card Test in both study areas, rates in young children were similar with both tests in both areas. CONCLUSIONS: These results extend the previously reported superior sensitivity of the FTS to areas with low residual infection rates following MDA, and this could affect mapping and post-MDA survey results in adults. However, our findings suggest that results of transmission assessment surveys (TAS) performed in school-aged children are likely to be similar with both tests

    Phospholipid Signaling Responses in Salt-Stressed Rice Leaves

    Get PDF
    Salinity is one of the major environmental factors limiting growth and productivity of rice plants. In this study, the effect of salt stress on phospholipid signaling responses in rice leaves was investigated. Leaf cuts were radiolabeled with 32P-orthophosphate and the lipids extracted and analyzed by thin-layer chromatography, autoradiography and phosphoimaging. Phospholipids were identified by co-migration of known standards. Results showed that 32Pi was rapidly incorporated into the minor lipids, phos-phatidylinositol bisphosphate (PIP2) and phosphatidic acid (PA) and, interestingly, also into the structural lipids phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), which normally label relatively slowly, like phosphatidylcholine (PC) and phosphatidylinositol (PI). Only very small amounts of PIP2 were found. However, in response to salt stress (NaCl), PIP2 levels rapidly (<30 min) increased up to 4-fold, in a time- and dose-dependent manner. PA and its phosphorylated product, diacylglyc-erolpyrophosphate (DGPP), also increased upon NaCl stress, while cardiolipin (CL) levels decreased. All other phospholipid levels remained unchanged. PA signaling can be generated via the combined action of phospholipase C (PLC) and diacylglycerol kinase (DGK) or directly via phospholipase D (PLD). The latter can be measured in vivo, using a transphosphatidylation assay. Interestingly, these measurements revealed that salt stress inhibited PLD activity, indicating that the salt stress-induced PA response was not due to PLD activity. Comparison of the 32P-lipid responses in salt-tolerant and salt-sensitive cultivars revealed no significant differences. Together these results show that salt stress rapidly activates several lipid responses in rice leaves but that these responses do not explain the difference in salt tolerance between sensitive and tolerant cultivars

    AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P(2) and PtdIns(4,5)P(2) in vitro and is inhibited by phosphorylation.

    No full text
    PtdIns phosphate kinases (PIPkins), which generate PtdInsP(2) isomers, have been classified into three subfamilies that differ in their substrate specificities. We demonstrate here that the previously identified AtPIP5K1 gene from Arabidopsis thaliana encodes a PIPkin with dual substrate specificity in vitro, capable of phosphorylating PtdIns3P and PtdIns4P to PtdIns(3,4)P(2) and PtdIns(4,5)P(2) respectively. We also show that recombinant AtPIP5K1 is phosphorylated by protein kinase A and a soluble protein kinase from A. thaliana. Phosphorylation of AtPIP5K1 by protein kinase A is accompanied by a 40% inhibition of its catalytic activity. Full activity is recovered by treating phosphorylated AtPIP5K1 with alkaline phosphatase

    Phosphoinositide signal transduction in guard cells

    No full text

    Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C.

    No full text
    Oscillations in cytosolic free Ca2+ concentration ([Ca2+]cyt) are an important component of Ca2+-based signal transduction pathways. This fact has led us to investigate whether oscillations in [Ca2+]cyt are involved in the response of stomatal guard cells to the plant hormone abscisic acid (ABA). We show that ABA induces oscillations in guard-cell [Ca2+]cyt. The pattern of the oscillations depended on the ABA concentration and correlated with the final stomatal aperture. We examined the mechanism by which ABA generates oscillations in guard-cell [Ca2+]cyt by using 1-(6-{[17-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione (U-73122), an inhibitor of phosphoinositide-specific phospholipase C (PI-PLC)-dependent processes in animals. U-73122 inhibited the hydrolysis of phosphatidylinositol 4,5-bisphosphate by a recombinant PI-PLC, isolated from a guard-cell-enriched cDNA library, in a dose-dependent manner. This result confirms that U-73122 is an inhibitor of plant PI-PLC activity. U-73122 inhibited both ABA-induced oscillations in [Ca2+]cyt and stomatal closure. In contrast, U-73122 did not inhibit external Ca2+-induced oscillations in guard-cell [Ca2+]cyt and stomatal closure. Furthermore, there was no effect of the inactive analogue 1-(6-{[17-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-2,5-pyrrolidinedione on recombinant PI-PLC activity or ABA-induced and external Ca2+-induced oscillations in [Ca2+]cyt and stomatal closure. This lack of effect suggests that the effects of U-73122 in guard cells are the result of inhibition of PI-PLC and not a consequence of nonspecific effects. Taken together, our data suggest a role for PI-PLC in the generation of ABA-induced oscillations in [Ca2+]cyt and point toward the involvement of oscillations in [Ca2+]cyt in the maintenance of stomatal aperture by ABA
    corecore