271 research outputs found

    Role of the Fas/FasL pathway in HIV or SIV disease

    Get PDF
    Human immunodeficiency virus disease involves progressive destruction of host immunity leading to opportunistic infections and increased rates for malignancies. Both depletion in immune cell numbers as well as defects in their effector functions are responsible for this immunodeficiency The broad impact of HIV reflects a similarly broad pattern of cell depletion including subsets that do not express viral receptors or support viral replication. Indirect cell killing, the destruction of uninfected cells, is due partly to activation of the Fas/FasL system for cell death. This death-signaling pathway is induced during HIV disease and contributes significantly to viral pathogenesis and disease

    Repertoire Development and the Control of Cytotoxic/Effector Function in Human γδ T Cells

    Get PDF
    T cells develop into two major populations distinguished by their T cell receptor (TCR) chains. Cells with the αβ TCR generally express CD4 or CD8 lineage markers and mostly fall into helper or cytotoxic/effector subsets. Cells expressing the alternate γδ TCR in humans generally do not express lineage markers, do not require MHC for antigen presentation, and recognize nonpeptidic antigens. We are interested in the dominant Vγ2Vδ2+ T cell subset in human peripheral blood and the control of effector function in this population. We review the literature on γδ T cell generation and repertoire selection, along with recent work on CD56 expression and defining a cytotoxic/effector lineage within the phosphoantigen-reactive Vγ2Vδ2 cells. A unique mechanism for MHC-independent repertoire selection is linked to the control of effector function that is vital to the role for γδ T cells in tumor surveillance. Better understanding of these mechanisms will improve our ability to exploit this population for tumor immunotherapy

    Ultra high density scanning electrical probe phase-change memory for archival storage

    Get PDF
    The potential for using probe-based phase-change memories for the future archival storage at densities of around 1 Tbit/in.² is investigated using a recording medium comprising a Si/TiN/DLC/GeSbTe/diamond-like carbon (DLC) stack together with a conductive PtSi tip for writing and reading. Both experimental and computational simulation results are presented. The simulations include a physically-realistic threshold switching model, as well as the effects of thermal boundary resistance and electrical contact resistance. The simulated bit size and shape correspond closely to that written experimentally

    Ultra-high density scanning electrical probe phase-change memory for archival storage.

    Get PDF
    In our work, we investigate the recording and readout performance of such phase-change memories and demonstrate experimental and simulation results which are based on a particular medium stack (Si/TiN/DLC/GST/DLC). The recording is achieved by injecting electrical current from a conductive tip to the storage medium to cause phase transformation through Joule heating, while readout is realised by sensing the current variation due to the significant differences in the electrical resistivity between the amorphous and crystalline phases. The experimental results clearly show that a crystalline bit with approximately 30nm diameter can be produced and readback, in good agreement with the corresponding simulations of the write/read processes

    Clonal Selection and Population Dynamics of Vγ2/Vδ2 T Cells in Macaca Fascicularis

    Get PDF
    HIV infection increases the susceptibility to new M. tuberculosis (Mtb) infections, the risk of reactivating latent infections and the risk of rapid TB progression. γδ T cells, in particular the Vγ2Jγ1.2 subset, are thought to be part of the innate immune response to both HIV and Mtb. Importantly, both HIV and Mtb perturb gd T cells homeostasis, causing a profound and highly specific depletion of the Vγ2Jγ1.2 subset

    Attenuated Disease in SIV-Infected Macaques Treated with a Monoclonal Antibody against FasL

    Get PDF
    Acute SIVmac infection in macaques is accompanied by high levels of plasma viremia that decline with the appearance of viral immunity and is a model for acute HIV disease in man. Despite specific immune responses, the virus establishes a chronic, persistent infection. The destruction of CD4+ and CD4- lymphocyte subsets in macaques contributes to viral persistence and suggests the importance of mechanisms for depleting both infected and uninfected (bystander) cells. Bystander cell killing can occur when FasL binds the Fas receptor on activated lymphocytes, which include T and B cell subpopulations that are responding to the infection. Destruction of specific immune cells could be an important mechanism for blunting viral immunity and establishing persistent infection with chronic disease. We inhibited the Fas pathway in vivo with a monoclonal antibody against FasL (RNOK203). Here we show that treatment with anti-FasL reduced cell death in circulating T and B cells, increased CTL and antibody responses to viral proteins, and lowered the setpoint viremia. By blocking FasL during only the first few weeks after infection, we attenuated SIVmac disease and increased the life span for infected and treated macaques

    Electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart

    Get PDF
    BackgroundThe intrinsic cardiac nervous system is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function.ObjectiveThe goals of this study were to provide a complete picture of the neurotransmitter/neuromodulator profile of the rabbit intrinsic cardiac nervous system and to determine the influence of spatially divergent ganglia on cardiac electrophysiology.MethodsNicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff-perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase, and/or neuronal nitric oxide synthase (nNOS) was performed using whole mount preparations.ResultsStimulation within all ganglia produced either bradycardia, tachycardia, or a biphasic brady-tachycardia. Electrical stimulation of the right atrial and right neuronal cluster regions produced the largest chronotropic responses. Significant prolongation of atrioventricular conduction was predominant at the pulmonary vein-caudal vein region. Neurons immunoreactive (IR) only for ChAT, tyrosine hydroxylase, or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946 ± 668 neurons). Neurons IR only for nNOS were distributed within ganglia.ConclusionStimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease
    corecore