70 research outputs found

    How does learning to read affect speech perception?

    Get PDF
    Behavioral studies have demonstrated that learning to read and write affects the processing of spoken language. The present study investigates the neural mechanism underlying the emergence of such orthographic effects during speech processing. Transcranial magnetic stimulation (TMS) was used to tease apart two competing hypotheses that consider this orthographic influence to be either a consequence of a change in the nature of the phonological representations during literacy acquisition or a consequence of online coactivation of the orthographic and phonological representations during speech processing. Participants performed an auditory lexical decision task in which the orthographic consistency of spoken words was manipulated and repetitive TMS was used to interfere with either phonological or orthographic processing by stimulating left supramarginal gyrus (SMG) or left ventral occipitotemporal cortex (vOTC), respectively. The advantage for consistently spelled words was removed only when the stimulation was delivered to SMG and not to vOTC, providing strong evidence that this effect arises at a phonological, rather than an orthographic, level. We propose a possible mechanistic explanation for the role of SMG in phonological processing and how this is affected by learning to read

    Genome-Wide Hypomethylation in Head and Neck Cancer Is More Pronounced in HPV-Negative Tumors and Is Associated with Genomic Instability

    Get PDF
    Loss of genome-wide methylation is a common feature of cancer, and the degree of hypomethylation has been correlated with genomic instability. Global methylation of repetitive elements possibly arose as a defense mechanism against parasitic DNA elements, including retrotransposons and viral pathogens. Given the alterations of global methylation in both viral infection and cancer, we examined genome-wide methylation levels in head and neck squamous cell carcinoma (HNSCC), a cancer causally associated with human papilloma virus (HPV). We assayed global hypomethylation levels in 26 HNSCC samples, compared with their matched normal adjacent tissue, using Pyrosequencing-based methylation assays for LINE repeats. In addition, we examined cell lines derived from a variety of solid tumors for LINE and SINE (Alu) repeats. The degree of LINE and Alu hypomethylation varied among different cancer cell lines. There was only moderate correlation between LINE and Alu methylation levels, with the range of variation in methylation levels being greater for the LINE elements. LINE hypomethylation was more pronounced in HPV-negative than in HPV-positive tumors. Moreover, genomic instability, as measured by genome-wide loss-of-heterozygosity (LOH) single nucleotide polymorphism (SNP) analysis, was greater in HNSCC samples with more pronounced LINE hypomethylation. Global hypomethylation was variable in HNSCC. Its correlation with both HPV status and degree of LOH as a surrogate for genomic instability may reflect alternative oncogenic pathways in HPV-positive versus HPV-negative tumors

    The Prognostic Significance of Whole Blood Global and Specific DNA Methylation Levels in Gastric Adenocarcinoma

    Get PDF
    Epigenetics, particularly DNA methylation, has recently been elucidated as important in gastric cancer (GC) initiation and progression. We investigated the clinical and prognostic importance of whole blood global and site-specific DNA methylation in GC. tests. Survival analyses were carried out using the Kaplan-Meier method and log rank test. A backward conditional Cox proportional hazards regression model was used to identify independent predictors of survival.β€Š=β€Š0.02) respectively.Analysis of global and site-specific DNA methylation in peripheral blood by pyrosequencing provides quantitative DNA methylation values that may serve as important prognostic indicators

    HelexKids:a word frequency database for Greek and Cypriot primary school children

    Get PDF
    In this article, we introduce HelexKids, an online written-word database for Greek-speaking children in primary education (Grades 1 to 6). The database is organized on a grade-by-grade basis, and on a cumulative basis by combining Grade 1 with Grades 2 to 6. It provides values for Zipf, frequency per million, dispersion, estimated word frequency per million, standard word frequency, contextual diversity, orthographic Levenshtein distance, and lemma frequency. These values are derived from 116 textbooks used in primary education in Greece and Cyprus, producing a total of 68,692 different word types. HelexKids was developed to assist researchers in studying language development, educators in selecting age-appropriate items for teaching, as well as writers and authors of educational books for Greek/Cypriot children. The database is open access and can be searched online at www.helexkids.org

    Hypomethylation of Intragenic LINE-1 Represses Transcription in Cancer Cells through AGO2

    Get PDF
    In human cancers, the methylation of long interspersed nuclear element -1 (LINE-1 or L1) retrotransposons is reduced. This occurs within the context of genome wide hypomethylation, and although it is common, its role is poorly understood. L1s are widely distributed both inside and outside of genes, intragenic and intergenic, respectively. Interestingly, the insertion of active full-length L1 sequences into host gene introns disrupts gene expression. Here, we evaluated if intragenic L1 hypomethylation influences their host gene expression in cancer. First, we extracted data from L1base (http://l1base.molgen.mpg.de), a database containing putatively active L1 insertions, and compared intragenic and intergenic L1 characters. We found that intragenic L1 sequences have been conserved across evolutionary time with respect to transcriptional activity and CpG dinucleotide sites for mammalian DNA methylation. Then, we compared regulated mRNA levels of cells from two different experiments available from Gene Expression Omnibus (GEO), a database repository of high throughput gene expression data, (http://www.ncbi.nlm.nih.gov/geo) by chi-square. The odds ratio of down-regulated genes between demethylated normal bronchial epithelium and lung cancer was high (p<1Eβˆ’27; ORβ€Š=β€Š3.14; 95% CIβ€Š=β€Š2.54–3.88), suggesting cancer genome wide hypomethylation down-regulating gene expression. Comprehensive analysis between L1 locations and gene expression showed that expression of genes containing L1s had a significantly higher likelihood to be repressed in cancer and hypomethylated normal cells. In contrast, many mRNAs derived from genes containing L1s are elevated in Argonaute 2 (AGO2 or EIF2C2)-depleted cells. Hypomethylated L1s increase L1 mRNA levels. Finally, we found that AGO2 targets intronic L1 pre-mRNA complexes and represses cancer genes. These findings represent one of the mechanisms of cancer genome wide hypomethylation altering gene expression. Hypomethylated intragenic L1s are a nuclear siRNA mediated cis-regulatory element that can repress genes. This epigenetic regulation of retrotransposons likely influences many aspects of genomic biology

    Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications

    Get PDF
    Epigenetic changes in long interspersed nuclear element-1s (LINE-1s or L1s) occur early during the process of carcinogenesis. A lower methylation level (hypomethylation) of LINE-1 is common in most cancers, and the methylation level is further decreased in more advanced cancers. Consequently, several previous studies have suggested the use of LINE-1 hypomethylation levels in cancer screening, risk assessment, tumor staging, and prognostic prediction. Epigenomic changes are complex, and global hypomethylation influences LINE-1s in a generalized fashion. However, the methylation levels of some loci are dependent on their locations. The consequences of LINE-1 hypomethylation are genomic instability and alteration of gene expression. There are several mechanisms that promote both of these consequences in cis. Therefore, the methylation levels of different sets of LINE-1s may represent certain phenotypes. Furthermore, the methylation levels of specific sets of LINE-1s may indicate carcinogenesis-dependent hypomethylation. LINE-1 methylation pattern analysis can classify LINE-1s into one of three classes based on the number of methylated CpG dinucleotides. These classes include hypermethylation, partial methylation, and hypomethylation. The number of partial and hypermethylated loci, but not hypomethylated LINE-1s, is different among normal cell types. Consequently, the number of hypomethylated loci is a more promising marker than methylation level in the detection of cancer DNA. Further genome-wide studies to measure the methylation level of each LINE-1 locus may improve PCR-based methylation analysis to allow for a more specific and sensitive detection of cancer DNA or for an analysis of certain cancer phenotypes

    The significance of epigenetic alterations in lung carcinogenesis

    Full text link

    Orthographic effects on spoken language

    No full text
    International audienc
    • …
    corecore