2,668 research outputs found

    Asexual and sexual replication in sporulating organisms

    Full text link
    This paper develops models describing asexual and sexual replication in sporulating organisms. Replication via sporulation is the replication strategy for all multicellular life, and may even be observed in unicellular life (such as with budding yeast). We consider diploid populations replicating via one of two possible sporulation mechanisms: (1) Asexual sporulation, whereby adult organisms produce single-celled diploid spores that grow into adults themselves. (2) Sexual sporulation, whereby adult organisms produce single-celled diploid spores that divide into haploid gametes. The haploid gametes enter a haploid "pool", where they may recombine with other haploids to form a diploid spore that then grows into an adult. We consider a haploid fusion rate given by second-order reaction kinetics. We work with a simplified model where the diploid genome consists of only two chromosomes, each of which may be rendered defective with a single point mutation of the wild-type. We find that the asexual strategy is favored when the rate of spore production is high compared to the characteristic growth rate from a spore to a reproducing adult. Conversely, the sexual strategy is favored when the rate of spore production is low compared to the characteristic growth rate from a spore to a reproducing adult. As the characteristic growth time increases, or as the population density increases, the critical ratio of spore production rate to organism growth rate at which the asexual strategy overtakes the sexual one is pushed to higher values. Therefore, the results of this model suggest that, for complex multicellular organisms, sexual replication is favored at high population densities, and low growth and sporulation rates.Comment: 8 pages, 5 figures, to be submitted to Journal of Theoretical Biology, figures not included in this submissio

    Proton NMR measurements of the local magnetic field in the paramagnetic metal and antiferromagnetic insulator phases of λ\lambda-(BETS)2_{2}FeCl4_{4}

    Full text link
    Measurements of the 1^{1}H-NMR spectrum of a small (\sim 4 μ\mug) single crystal of the organic conductor λ\lambda-(BETS)2_{2}FeCl4_{4} are reported with an applied magnetic field B\bf{B}0_{0} = 9 T parallel to the a-axis in the acac-plane over a temperature (T)(T) range 2.0 - 180 K. They provide the distribution of the static local magnetic field at the proton sites in the paramagnetic metal (PM) and antiferromagnetic insulator (AFI) phases, along with the changes that occur at the PM-AFI phase transition. The spectra have six main peaks that are significantly broadened and shifted at low TT. The origin of these features is attributed to the large dipolar field from the 3d Fe3+^{3+} ion moments (spin SdS_{\rm{d}} = 5/2). Their amplitude and TT-dependence are modeled using a modified Brillouin function that includes a mean field approximation for the total exchange interaction (J0J_{0}) between one Fe3+^{3+} ion and its two nearest neighbors. A good fit is obtained using J0J_{0} = - 1.7 K. At temperatures below the PM-AFI transition temperature TMIT_{MI} = 3.5 K, an extra peak appears on the high frequency side of the spectrum and the details of the spectrum become smeared. Also, the rms linewidth and the frequency shift of the spectral distribution are discontinuous, consistent with the transition being first-order. These measurements verify that the dominant local magnetic field contribution is from the Fe3+^{3+} ions and indicate that there is a significant change in the static local magnetic field distribution at the proton sites on traversing the PM to AFI phase transition.Comment: 11 pages, 7 figures. Revised version of cond-mat/0605044 resubmitted to Phys. Rev. B in response to comments of Editor and reviewer

    Impairment of left atrial function and cryptogenic stroke : potential insights in the pathophysiology of stroke in the young

    Get PDF
    Background: Stroke is one of the leading causes of morbidity and mortality with a significant percentage classified as cryptogenic. Left atrial (LA) remodelling, a substrate for atrial fibrillation (AF) and stroke development, may play a role in identification of the aetiology of cryptogenic stroke. We aimed to examine LA function to gain mechanistic insights into the pathophysiology of cryptogenic stroke in young patients otherwise at low risk for cardiovascular disease. Methods: Patients aged <60 years without traditional cardiovascular risk factors and who were diagnosed with ischaemic cryptogenic stroke or TIA were evaluated and compared to healthy controls and patients with paroxysmal AF with a CHA2DS2-VA score of 0. Conventional and novel left ventricular (LV) and LA echocardiographic parameters between the three groups were assessed. Results: Each group consisted of thirty patients. There were no significant differences in LV parameters (LVEF, LV endoGLS) between groups. LA strain in stroke patients was significantly lower compared to the controls (median 33%; interquartile range (IQ) [32/39] vs 31 [27/34]; p = 0.008). LA strain was significantly lower in AF patients compared to stroke patients (median 21% [19/22] vs 31% [27/34]; p < 0.0001). Conclusion: A stepwise reduction in measures of LA function was appreciated between controls, young stroke and paroxysmal AF groups. This may indicate dynamic LA remodelling occurring in the young stroke population and suggest a shared causal mechanism for stroke development in this group. LA strain may further refine the risk for cardioembolic stroke

    Dissecting the Cosmic Infrared Background with 3D Instruments

    Get PDF
    The cosmic infrared background (CIB) consists of emission from distant, dusty, star-forming galaxies. Energetically, the CIB is very important as it contains as much energy as the extragalactic optical background. The nature and evolutionary status of the objects making up the background are, however, unclear. The CIB peaks at ~150 microns, and as such is most effectively studied from space. The limited apertures of space-borne telescopes set the angular resolution that can be attained, and so even Herschel, with its 3.5m diameter, will be confusion-limited at this wavelengths at ~5mJy. The bulk of the galaxies contributing to the CIB are fainter than this, so it is difficult to study them without interferometry. Here we present the results of a preliminary study of an alternative way of probing fainter than the continuum confusion limit using far-IR imaging spectroscopy. An instrument capable of such observations is being planned for SPICA - a proposed Japanese mission with an aperture equivalent to that of Herschel and more than 2 orders of magnitude more sensitive. We investigate the potential of imaging spectrometers to break the continuum confusion limit. We have simulated the capabilities of a spectrometer with modest field of view (2'x2'), moderate spectral resolution (R~1-2000) and high sensitivity. We find that such an instrument is capable of not only detecting line emission from sources with continuum fluxes substantially below the confusion limit, but also of determining their redshifts and, where multiple lines are detected, some emission line diagnostics. We conclude that 3-D imaging spectrometers on cooled far-IR space telescopes will be powerful new tools for extragalactic far-IR astronomy.Comment: Accepted for publication in Astronomy & Astrophysic

    Ionic Liquid-Based Microemulsions in Catalysis

    Get PDF
    The design and properties of surface-active ionic liquids that are able to form stable microemulsions with heptane and water are presented, and their promise as reaction media for thermomorphic palladium-catalyzed cross-coupling reactions is demonstrated

    First detection of [CII]158um at high redshift: vigorous star formation in the early universe

    Full text link
    We report the detection of the 2P_3/2 -> 2P_1/2 fine-structure line of C+ at 157.74 micron in SDSSJ114816.64+525150.3 (hereafter J1148+5251), the most distant known quasar, at z=6.42, using the IRAM 30-meter telescope. This is the first detection of the [CII] line at high redshift, and also the first detection in a Hyperluminous Infrared Galaxy (L_FIR > 10^13 Lsun). The [CII] line is detected at a significance level of 8 sigma and has a luminosity of 4.4 x 10^9 Lsun. The L_[CII]/L_FIR ratio is 2 x 10^-4, about an order of magnitude smaller than observed in local normal galaxies and similar to the ratio observed in local Ultraluminous Infrared Galaxies. The [CII] line luminosity indicates that the host galaxy of this quasar is undergoing an intense burst of star formation with an estimated rate of ~3000 Msun/yr. The detection of C+ in SDSS J1148+5251 suggests a significant enrichment of metals at z ~ 6 (age of the universe ~870 Myr), although the data are consistent with a reduced carbon to oxygen ratio as expected from chemical evolutionary models of the early phases of galaxy formation.Comment: 5 pages, 2 figures, accepted by A&A Letter

    Strong [CII] emission at high redshift

    Full text link
    We report the detection of the [CII]157.74um fine-structure line in the lensed galaxy BRI 0952-0115 at z=4.43, using the APEX telescope. This is the first detection of the [CII] line in a source with L_FIR < 10^13 L_sun at high redshift. The line is very strong compared to previous [CII] detections at high-z (a factor of 5-8 higher in flux), partly due to the lensing amplification. The L_[CII]/L_FIR ratio is 10^-2.9, which is higher than observed in local galaxies with similar infrared luminosities. Together with previous observations of [CII] at high redshift, our result suggests that the [CII] emission in high redshift galaxies is enhanced relative to local galaxies of the same infrared luminosity. This finding may result from selection effects of the few current observations of [CII] at high redshift, and in particular the fact that non detections may have not been published (although the few published upper limits are still consistent with the [CII] enhancement scenario). If the trend is confirmed with larger samples, it would indicate that high-z galaxies are characterized by different physical conditions with respect to their local counterparts. Regardless of the physical origin of the trend, this effect would increase the potential of the [CII]158um line to search and characterize high-z sources.Comment: Accepted for publication in A&A Letters, 5 pages, 2 figure
    corecore