1,431 research outputs found

    Problems Affecting Labor

    Get PDF
    Much experimental work has been devoted in comparing the folding behavior of proteins sharing the same fold but different sequence. The recent design of proteins displaying very high sequence identities but different 3D structure allows the unique opportunity to address the protein-folding problem from a complementary perspective. Here we explored by ℙ-value analysis the pathways of folding of three different heteromorphic pairs, displaying increasingly high-sequence identity (namely, 30%, 77%, and 88%), but different structures called G A (a 3-α helix fold) and G B (an α/β fold). The analysis, based on 132 site-directed mutants, is fully consistent with the idea that protein topology is committed very early along the pathway of folding. Furthermore, data reveals that when folding approaches a perfect two-state scenario, as in the case of the G A domains, the structural features of the transition state appear very robust to changes in sequence composition. On the other hand, when folding is more complex and multistate, as for the G Bs, there are alternative nuclei or accessible pathways that can be alternatively stabilized by altering the primary structure. The implications of our results in the light of previous work on the folding of different members belonging to the same protein family are discussed

    Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color

    Get PDF
    During development, within a specific temporal window called the critical period, the mammalian visual cortex is highly plastic and literally shaped by visual experience; to what extent this extraordinary plasticity is retained in the adult brain is still a debated issue. We tested the residual plastic potential of the adult visual cortex for both achromatic and chromatic vision by measuring binocular rivalry in adult humans following 150 minutes of monocular patching. Paradoxically, monocular deprivation resulted in lengthening of the mean phase duration of both luminance-modulated and equiluminant stimuli for the deprived eye and complementary shortening of nondeprived phase durations, suggesting an initial homeostatic compensation for the lack of information following monocular deprivation. When equiluminant gratings were tested, the effect was measurable for at least 180 minutes after reexposure to binocular vision, compared with 90 minutes for achromatic gratings. Our results suggest that chromatic vision shows a high degree of plasticity, retaining the effect for a duration (180 minutes) longer than that of the deprivation period (150 minutes) and twice as long as that found with achromatic gratings. The results are in line with evidence showing a higher vulnerability of the P pathway to the effects of visual deprivation during development and a slower development of chromatic vision in humans. Introductio

    Visual motion distorts visual and motor space

    Get PDF
    Much evidence suggests that visual motion can cause severe distortions in the perception of spatial position. In this study, we show that visual motion also distorts saccadic eye movements. Landing positions of saccades performed to objects presented in the vicinity of visual motion were biased in the direction of motion. The targeting errors for both saccades and perceptual reports were maximum during motion onset and were of very similar magnitude under the two conditions. These results suggest that visual motion affects a representation of spatial position, or spatial map, in a similar fashion for visuomotor action as for perception

    Perception during double-step saccades

    Get PDF
    How the visual system achieves perceptual stability across saccadic eye movements is a long-standing question in neuroscience. It has been proposed that an efference copy informs vision about upcoming saccades, and this might lead to shifting spatial coordinates and suppressing image motion. Here we ask whether these two aspects of visual stability are interdependent or may be dissociated under special conditions. We study a memory-guided double-step saccade task, where two saccades are executed in quick succession. Previous studies have led to the hypothesis that in this paradigm the two saccades are planned in parallel, with a single efference copy signal generated at the start of the double-step sequence, i.e. before the first saccade. In line with this hypothesis, we find that visual stability is impaired during the second saccade, which is consistent with (accurate) efference copy information being unavailable during the second saccade. However, we find that saccadic suppression is normal during the second saccade. Thus, the second saccade of a double-step sequence instantiates a dissociation between visual stability and saccadic suppression: stability is impaired even though suppression is strong

    Perceptual Oscillations in Gender Classification of Faces, Contingent on Stimulus History

    Get PDF
    Perception is a proactive ‘‘predictive’’ process, in which the brain takes advantage of past experience to make informed guesses about the world to test against sensory data. Here we demonstrate that in the judgment of the gender of faces, beta rhythms play an important role in communicating perceptual experience. Observers classified in forced choice as male or female, a sequence of face stimuli, which were physically constructed to be male or female or androgynous (equal morph). Classification of the androgynous stimuli oscillated rhythmically between male and female, following a complex waveform comprising 13.5 and 17 Hz. Parsing the trials based on the preceding stimulus showed that responses to androgynous stimuli preceded by male stimuli oscillated reliably at 17 Hz, whereas those preceded by female stimuli oscillated at 13.5 Hz. These results suggest that perceptual priors for face perception from recent perceptual memory are communicated through frequency-coded beta rhythms

    Efficient multiple time scale molecular dynamics: using colored noise thermostats to stabilize resonances

    Get PDF
    Multiple time scale molecular dynamics enhances computational efficiency by updating slow motions less frequently than fast motions. However, in practice the largest outer time step possible is limited not by the physical forces but by resonances between the fast and slow modes. In this paper we show that this problem can be alleviated by using a simple colored noise thermostatting scheme which selectively targets the high frequency modes in the system. For two sample problems, flexible water and solvated alanine dipeptide, we demonstrate that this allows the use of large outer time steps while still obtaining accurate sampling and minimizing the perturbation of the dynamics. Furthermore, this approach is shown to be comparable to constraining fast motions, thus providing an alternative to molecular dynamics with constraints.Comment: accepted for publication by the Journal of Chemical Physic

    Blood Oxygen Level-Dependent Activation of the Primary Visual Cortex Predicts Size Adaptation Illusion

    Get PDF
    In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In ahumanfMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene

    Daemonic ergotropy in continuously-monitored open quantum batteries

    Full text link
    The amount of work that can be extracted from a quantum system can be increased by exploiting the information obtained from a measurement performed on a correlated ancillary system. The concept of daemonic ergotropy has been introduced to properly describe and quantify this work extraction enhancement in the quantum regime. We here explore the application of this idea in the context of continuously-monitored open quantum systems, where information is gained by measuring the environment interacting with the energy-storing quantum device. We first show that the corresponding daemonic ergotropy takes values between the ergotropy and the energy of the corresponding unconditional state. The upper bound is achieved by assuming an initial pure state and a perfectly efficient projective measurement on the environment, independently of the kind of measurement performed. On the other hand, if the measurement is inefficient or the initial state is mixed, the daemonic ergotropy is generally dependent on the measurement strategy. This scenario is investigated via a paradigmatic example of an open quantum battery: a two-level atom driven by a classical field and whose spontaneously emitted photons are continuously monitored via either homodyne, heterodyne, or photo-detection.Comment: 6 pages, 4 figure
    • …
    corecore