127 research outputs found

    Spectral wings of the fiber supercontinuum and the dark-bright soliton interaction

    Full text link
    We present experimental and numerical data on the supercontinuum generation in an optical fiber pumped in the normal dispersion range where the seeded dark and the spontaneously generated bright solitons contribute to the spectral broadening. We report the dispersive radiation arising from the interaction of the bright and dark solitons. This radiation consists of the two weak dispersing pulses that continuously shift their frequencies and shape the short and long wavelength wings of the supercontinuum spectrum.Comment: supercontinuum, soliton, fiber; 6 page

    Effect of input pulse chirp on nonlinear energy deposition and plasma excitation in water

    Full text link
    We analyze numerically and experimentally the effect of the input pulse chirp on the nonlinear energy deposition from 5 μ5\ \muJ fs-pulses at 800800 nm to water. Numerical results are also shown for pulses at 400400 nm, where linear losses are minimized, and for different focusing geometries. Input chirp is found to have a big impact on the deposited energy and on the plasma distribution around focus, thus providing a simple and effective mechanism to tune the electron density and energy deposition. We identify three relevant ways in which plasma features may be tuned.Comment: 9 pages, 7 figure

    Filamentation with nonlinear Bessel vortices

    No full text
    International audienceWe present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propa-gation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and non-linear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. OCIS codes: (190.7110) Ultrafast nonlinear optics; (190.5940) Self-action effects; (190.3270) Kerr effect

    Emission of dispersive waves from a train of dark solitons in optical fibers

    Get PDF
    International audienceWe report the experimental observation of multiple dis-persive waves emitted in the anomalous dispersion region of an optical fiber from a train of dark solitons. Each individual dispersive wave can be associated to one particular dark soliton of the train, using phase-matching arguments involving higher-order dispersion and soliton velocity. For a large number of dark solitons (> 10), we observe the formation of a continuum associated with the efficient emission of disper-sive waves

    Grayness-dependent emission of dispersive waves from dark solitons in optical fibers

    Get PDF
    International audienceWe report the experimental observation of dispersive wave emission from gray solitons propagating in the normal dispersion region of an optical fiber. Besides observing for the first time the emission of a disper-sive wave from an isolated dark soliton, we show that the dispersive wave frequency and amplitude strongly depends on soliton grayness. This process can be explained by the higher-order dispersion contribution into the phase-matching condition and the grayness of the soliton. Numerical simulations and theoretical predictions are in good agreement with the experiments

    In vitro evaluation of the antimicrobial activity of plant extracts from Ruya graveolens and Annona muricata

    Full text link
    Resistance of microorganisms to commercial drugs is increasing worldwide, and therefore the search for new antimicrobial agents is a key issue. The aim of this study was to identify the potential of plant extracts from Ruta graveolens and Annona muricata as candidates for the development of new antimicrobials

    Continuum generation by dark solitons

    Get PDF
    We demonstrate that the dark soliton trains in optical fibers with a zero of the group velocity dispersion can generate broad spectral distribution (continuum) associated with the resonant dispersive radiation emitted by solitons. This radiation is either enhanced or suppressed by the Raman scattering depending on the sign of the third order dispersion
    • …
    corecore