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We demonstrate that soliplasmons (soliton–plasmon bound states) appear naturally as eigenmodes of nonlinear
Maxwell’s equations for a metal/Kerr interface. Conservative stability analysis is performed by means of finite
element numerical modeling of the time-independent nonlinear Maxwell equations. Dynamical features are in
agreement with the presented nonlinear oscillator model. © 2012 Optical Society of America
OCIS codes: 190.6135, 240.6680.

Nanoscaled plasmonic optical solitons have attracted
much attention in the last few years. Recent studies
report plasmonic solitons in single and double metal/
dielectric interfaces [1,2], systems with gain and loss
[3,4], waveguide arrays [5–7], and chains of nanoparticles
[8]. Strong surface plasmon polariton (SPP) fields at the
interface enhance the nonlinear effect [9].
Recently, it has been suggested that SPPs can couple to

spatial solitons [10] because both have a wavenumber
greater than that of the light cone (see, e.g., [11–13]) and
their dispersion relations intersect [see Fig. 1(b)]. A sym-
metric coupled oscillator model was introduced by means
of heuristic reasoning, and its dynamical properties were
fully analyzed in [14]. Although surface solitons were ear-
lier studied (see, e.g., [15,16]), they consisted of one com-
ponent only, whereas the soliplasmons considered here
consist of two: one peaked at the metal interface and the
other one peaked far from it in the Kerr medium.
In this Letter, we prove for the first time that the

soliplasmons proposed in [10] exist in the context of
Maxwell equations. We compute numerically the soli-
plasmons as eigenstates of the nonlinear Maxwell equa-
tions for a metal/Kerr interface [Fig. 1(a)], showing that
they are classified according to the relative soliton–
plasmon phase δ � 0, π. Finite element analysis modeling
is used to integrate the time-independent nonlinear
Maxwell equations in two dimensions to analyze soli-
plasmon stability. The non-self-adjoint character of the
Maxwell operator (property of the vectorial nature of the
system) leads to an oscillator model with asymmetric
coupling between the SPP and the soliton. This model
has no unknown parameters (as opposed to [10]) and
therefore predicts realistic physical properties of the
stationary solutions and their stability. Inclusion of
ohmic losses is observed to yield a nontrivial dynamics.
We analyze the full-vector nonlinear equation for a

monochromatic wave (cw) Eω with frequency ω � ck,�
∂2

∂z2
� ∂2

∂x2
� k2εL�x�

�
Eω � Lv�x�Eω − PNL; (1)

where εL � εm�K� for x < 0 (x > 0), Lv ≡∇�∇∘�, PNL �
�k2χ�3�=3�f2jEωj2Eω � E2

ωE�
ωg, and χ�3� ≡ ε0cεKn2. Our

geometry is assumed to be illuminated from the Kerr
medium [see Fig. 1(a)], and diffraction along y is ne-
glected. Equation (1) can be transformed into the dyna-
mical equations of a soliplasmon by using the variational
ansatz of [10],

Eω�x; z� � �cp�z�ep�x� � ucs�z�f s�x − a; cs�z���eiknKz; (2)

where cp, cs are the complex amplitudes. ep�x� is a
TM-SPP on the interface with propagation constant βp,
which is a stationary solution of Eq. (1), and hence
cp�z� � cp�0�eiμpz (βp � knK � μp). The soliton term in
Eq. (2), ϕs � csf s � cs sech�κs�x − a��, κs ≡ �knKγ�1=2jcsj,
is located at a distance a from the interface, such that
the overlap with the SPP is small (weak coupling), and
it is a solution of the stationary scalar (Lv � 0) and
paraxial nonlinear Schrödinger equation, f1=�2knK �∂2x�
γjϕsj2gϕs�μsϕs (γ ≡ kχ�3�=�2nK �), with cs�z� � cs�0�eiμsz

Fig. 1. (Color online) (a) Metal/Kerr structure with linear
dielectric constants εm � −n2

m, εK � n2
K and nonlinear Kerr

index n2. (b) Dispersion of a SPP in a lossy metal (black)
and a spatial soliton (gray) owning two different amplitudes
(βs � knK �1� gjcsj2�). Circles enclose the matching points,
and the dashed line marks the light cone ω � βc=

������
εK

p
.
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and βs � knK � μs, where μs � γjcs�0�j2=2. Note that
cs�z� appears nonlinearly in Eq. (2), which prevents
the soliplasmon from behaving as a linear superposition
of the two modes. Considering that a is constant and that
the soliton is x-polarized, i.e., u ≈ x, (as supported by
Figs. 3–5), substitution of Eq. (2) in the paraxial version
of Eq. (1), −i∂zex � M̂ex, leads to the soliplasmon equa-
tions [17] ( _Ψ≡ dΨ=dz)

−ij_ci � Mjci; M � �M̂ � �
�

μp q�jcsj�
q̄�jcsj� μs

�
; (3)

where jci≡ �cp; cs�T . The origin of the coupling in Eq. (3)
is the nonorthogonality relation

R
x e

�
px f s ≠ 0, and it is not

symmetric in general, q̄=q ∼ Np=Ns, where q ≡ k=�2nKNp�R
x �εL − n2

K �epuf s ∼ exp �−a �����������
knKγ

p jcsj�, Np≡
R
x jepxj2 and

Ns ≡
R
x f

2
s . This feature was not captured by previous

heuristic models [10,14]. Interestingly, q, q̄ are propor-
tional to the value of the soliton tail at the interface
[10], revealing that a strong soliton drives a weak SPP
(Ns ≫ Np) at a rate q.
Stationary soliplasmons of Eq. (3) are determined

from the eigenvalues, μδ, and eigenvectors, jμδi �
cs0�q=fμδ − μpg; 1�T of M (cs0 ∈ C),

β � knK � μ̄� eiδ
������������������
Δ2

μ � qq̄

q
; δ � 0; π; (4)

Ex�x; z�
cs0

�
�
qepx�x�
μδ − μp

� sech�κs�x − a��
�
eiβz; (5)

where β � knK � μδ, μ̄≡ �μp � μs�=2; and Δμ≡

�μp − μs�=2. Note from Eq. (4) that μ0 > μp and μπ < μp,
so the plasmon term in Eq. (5) is >0 (<0) for δ � 0
(π) and δ is the relative soliton–plasmon phase. The
minimum value of μδ − μp � ������

qq̄
p

exp�iδ� imposes a
maximum in the soliplasmon norm, the solution with in-
finite power μδ � μp being nonphysical. We verified these
features by plotting the guided power P�μ;ω; a� �R
x E

�
xHy=2 � ωε0=�2β�

R
x εjExj2 of the numerically com-

puted soliplasmons in Fig. 2. At fixed (ω, a) there are
two divergent branches, μ0 > μp (right) and μπ < μp
(left), in agreement with Eq. (4). Far from the asymptote,
both branches coalesce into the monotonically in-
creasing soliton curve Ps�μ� ∼ μ1=2, but close to it they
open a gap in μ, which is proportional to

������
qq̄

p
∼ exp

�−a �����������
knKγ

p jcsj�. Soliplasmons are computed from
Eq. (1) (E�x; z� � E�x�eiβz) on a silver/glass interface
(ϵm � −82, ϵK � 2.09, n2 � 2.6 × 10−20 m2=W), by means
of an iterative Fourier method that fixes a, letting the
families P�μ; a� be found separately. Soliplasmons with
δ � 0, π naturally appear (see insets of Fig. 2).
The stability of soliplasmons was checked by propa-

gating the solutions with input noise (20% in amplitude)
and without losses (ϵm ∈ Re). Focusing a beam into the
Kerr material is likely to excite soliplasmons with a
strong solitonic component, so we focus below on the
case Np=Ns ≪ 1 (q̄ ≪ q), in which the soliton dynamics
is quasi-stationary; i.e., j_csj=jcsj ≪ j_cpj=jcpj. In this situa-
tion, the dynamics can be qualitatively predicted by

rewriting Eq. (3) as two equations for the relative phase,
ϕsp ≡ ϕp − ϕs, and jcpj (cp;s � jcp;sj exp�iϕp;s�),

_ϕsp ≈ 2Δμ � q
jcsj
jcpj

cos ϕsp; j_cpj � qjcsj sin ϕsp: (6)

Perturbations introduced here induce an increase of
ϕsp [see Figs. 4(b) and 5(b)]. The amplitude Eq. (6) pre-
dicts that in this situation jcpj will increase (decrease) if
sin ϕsp > 0 (<0). These features are clear in our dynami-
cal simulations, which integrate Eq. (1) with no approx-
imations and permit us to evaluate cp, cs as the peak
amplitudes of the plasmon and soliton components.
Figure 3 shows the propagation of a δ � π solution. Apart
from being diffraction free, the input noise introduces
fluctuations that propagate away from the soliplasmon
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Fig. 2. (Color online) P versus μ=k curves for δ � 0 (right) and
δ � π (left) soliplasmon families at ω≃ 1.26 PHz (λ � 1.5 μm)
for a � 3 μm (dotted), a � 4 μm (dashed), and a � 5 μm
(solid). Insets: x (solid) and z (dashed) dimensionless compo-
nents of the mode profiles E ≡
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Fig. 3. (Color online) (a) Ex of the π-soliplasmon with neff �
1.464 along propagation. Left inset magnifies Ex over the area
where it is placed. Contour lines of the Poynting vector norm
show power flow, the magnitude of which is represented by
the arrows, with the black ones being magnified. Right inset
shows the diffraction observed in the linear regime over the
first 12 μm. (b) Phase, ϕsp, and (c) amplitudes, jcs;pj, associated
to (a). Initial jumps in (c) are due to input noise.
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(see insets). The decrease of jcpj is associated to the
transfer of energy from the SPP to the soliton.
Propagation of a δ � 0 solution (see Fig. 4) shows

a very different behavior, since the initial increase of
jcpj implies that the SPP drains energy from the soliton.
Remarkably, j_cpj � 0 at ϕsp � 0, �π and the flow of
energy between the soliton and SPP is reversed [see
Figs. 4(b), 4(c)], as Eq. (6) predicts. δ � π soliplasmons
appear to be more oscillatory stable than the δ � 0 ones,
stability meaning a small energy transfer between the so-
liton and SPP components.

The effect of ohmic losses is shown in Fig. 5, for the
same initial conditions of Fig. 4. The first ∼20 μm pre-
sent similar dynamics in both cases. However, as soon
as ϕsp � π, the soliton stops pumping the SPP and jcpj
drops dramatically [compare with Fig. 4(c)]. Exposure
to metal reflection bends the soliton trajectory and
decouples it from the SPP. Therefore, losses may in-
duce a significant drift of the soliton position, a, and a
realistic dynamical model has to consider it as a var-
iational parameter too. This issue is subject of current
work.

In summary, we reported on the progress made towards
the analysis of the stationary and dynamical properties of
soliton–plasmon bound states, soliplasmons, by means of
numerical modeling of Maxwell equations. The oscillator
model introduced predicts qualitatively the physics asso-
ciated to these waves.

The work of A. F. and C. M. was partially supported
by the Ministerio de Ciencia e Innovación (MICINN)
TEC2010-15327 project.
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Fig. 4. (Color online) Propagation of the 0-soliplasmon with
neff � 1.472. (a) Ex, (b) soliton–plasmon relative phase, and
(c) soliton and plasmon amplitudes.
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