771 research outputs found

    Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases

    Full text link
    We report on the observation of sympathetic cooling of a cloud of fermionic 6-Li atoms which are thermally coupled to evaporatively cooled bosonic 87-Rb. Using this technique we obtain a mixture of quantum-degenerate gases, where the Rb cloud is colder than the critical temperature for Bose-Einstein condensation and the Li cloud colder than the Fermi temperature. From measurements of the thermalization velocity we estimate the interspecies s-wave triplet scattering length |a_s|=20_{-6}^{+9} a_B. We found that the presence of residual rubidium atoms in the |2,1> and the |1,-1> Zeeman substates gives rise to important losses due to inelastic collisions.Comment: 4 pages, 3 figure

    Observation of Feshbach-like resonances in collisions between ultracold molecules

    Full text link
    We observe magnetically tuned collision resonances for ultracold Cs2 molecules stored in a CO2-laser trap. By magnetically levitating the molecules against gravity, we precisely measure their magnetic moment. We find an avoided level crossing which allows us to transfer the molecules into another state. In the new state, two Feshbach-like collision resonances show up as strong inelastic loss features. We interpret these resonances as being induced by Cs4 bound states near the molecular scattering continuum. The tunability of the interactions between molecules opens up novel applications such as controlled chemical reactions and synthesis of ultracold complex molecules

    Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture

    Full text link
    The route toward a Bose-Einstein condensate of dipolar molecules requires the ability to efficiently associate dimers of different chemical species and transfer them to the stable rovibrational ground state. Here, we report on recent spectroscopic measurements of two weakly bound molecular levels and newly observed narrow d-wave Feshbach resonances. The data are used to improve the collisional model for the Bose-Bose mixture 41K87Rb, among the most promising candidates to create a molecular dipolar BEC.Comment: 13 pages, 3 figure

    Creation and manipulation of Feshbach resonances with radio-frequency radiation

    Full text link
    We present a simple technique for studying collisions of ultracold atoms in the presence of a magnetic field and radio-frequency radiation (rf). Resonant control of scattering properties can be achieved by using rf to couple a colliding pair of atoms to a bound state. We show, using the example of 6Li, that in some ranges of rf frequency and magnetic field this can be done without giving rise to losses. We also show that halo molecules of large spatial extent require much less rf power than deeply bound states. Another way to exert resonant control is with a set of rf-coupled bound states, linked to the colliding pair through the molecular interactions that give rise to magnetically tunable Feshbach resonances. This was recently demonstrated for 87Rb [Kaufman et al., Phys. Rev. A 80:050701(R), 2009]. We examine the underlying atomic and molecular physics which made this possible. Lastly, we consider the control that may be exerted over atomic collisions by placing atoms in superpositions of Zeeman states, and suggest that it could be useful where small changes in scattering length are required. We suggest other species for which rf and magnetic field control could together provide a useful tuning mechanism.Comment: 21 pages, 8 figures, submitted to New Journal of Physic

    Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules

    Full text link
    We explore the rich internal structure of Cs_2 Feshbach molecules. Pure ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude of weakly bound states is populated by elaborate magnetic-field ramping techniques. Our methods use different Feshbach resonances as input ports and various internal level crossings for controlled state transfer. We populate higher partial-wave states of up to eight units of rotational angular momentum (l-wave states). We investigate the molecular structure by measurements of the magnetic moments for various states. Avoided level crossings between different molecular states are characterized through the changes in magnetic moment and by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present a precise measurement of the magnetic-field dependent binding energy of the weakly bound s-wave state that is responsible for the large background scattering length of Cs. This state is of particular interest because of its quantum-halo character.Comment: 15 pages, 12 figures, 4 table

    Photoassociation spectroscopy of cold alkaline earth atoms near the intercombination line

    Full text link
    The properties of photoassociation (PA) spectra near the intercombination line (the weak transition between 1S0^{1}S_{0} and 3P1^{3}P_{1} states) of group II atoms are theoretically investigated. As an example we have carried out a calculation for Calcium atoms colliding at ultra low temperatures of 1 mK, 1 ÎŒ\muK, and 1 nK. Unlike in most current photoassociation spectroscopy the Doppler effect can significantly affect the shape of the investigated lines. Spectra are obtained using Ca--Ca and Ca--Ca∗^* short-range {\it ab initio} potentials and long-range van der Waals and resonance dipole potentials. The similar van der Waals coefficients of ground 1S0+1S0^{1}S_{0} + ^{1}S_{0} and excited 1S0+3P1^{1}S_{0} + ^{3}P_{1} states cause the PA to differ greatly from those of strong, allowed transitions with resonant dipole interactions. The density of spectral lines is lower, the Condon points are at relatively short range, and the reflection approximation for the Franck-Condon factors is not applicable, and the spontaneous decay to bound ground-state molecules is efficient. Finally, the possibility of efficient production of cold molecules is discussed

    Atom-molecule equilibration in a degenerate Fermi gas with resonant interactions

    Full text link
    We present a nonequilibrium kinetic theory describing atom-molecule population dynamics in a two-component Fermi gas with a Feshbach resonance. Key collision integrals emerge that govern the relaxation of the atom-molecule mixture to chemical and thermal equilibrium. Our focus is on the pseudogap regime where molecules form above the superfluid transition temperature. In this regime, we formulate a simple model for the atom-molecule population dynamics. The model predicts the saturation of molecule formation that has been observed in recent experiments, and indicates that a dramatic enhancement of the atom-molecule conversion efficiency occurs at low temperatures.Comment: Updated manuscript on July 5, 2004. Four pages with three embedded figure

    Customized television: Standards compliant advanced digital television

    Get PDF
    This correspondence describes a European Union supported collaborative project called CustomTV based on the premise that future TV sets will provide all sorts of multimedia information and interactivity, as well as manage all such services according to each user’s or group of user’s preferences/profiles. We have demonstrated the potential of recent standards (MPEG-4 and MPEG-7) to implement such a scenario by building the following services: an advanced EPG, Weather Forecasting, and Stock Exchange/Flight Information

    Resonance structures in the multichannel quantum defect theory for the photofragmentation processes involving one closed and many open channels

    Get PDF
    The transformation introduced by Giusti-Suzor and Fano and extended by Lecomte and Ueda for the study of resonance structures in the multichannel quantum defect theory (MQDT) is used to reformulate MQDT into the forms having one-to-one correspondence with those in Fano's configuration mixing (CM) theory of resonance for the photofragmentation processes involving one closed and many open channels. The reformulation thus allows MQDT to have the full power of the CM theory, still keeping its own strengths such as the fundamental description of resonance phenomena without an assumption of the presence of a discrete state as in CM.Comment: 7 page

    Negotiating professional and social voices in research principles and practice

    Get PDF
    This paper draws on work conducted for a qualitative interview based study which explores the gendered racialised and professional identifications of health and social care professionals. Participants for the project were drawn from the professional executive committees of recently formed Primary Care Trusts. The paper discusses how the feminist psychosocial methodological approach developed for the project is theoretically, practically and ethically useful in exploring the voices of those in positions of relative power in relation to both health and social care services and the social relations of gender and ethnicity. The approach draws on psychodynamic accounts of (defended) subjectivity and the feminist work of Carol Gilligan on a voice-centred relational methodology. Coupling the feminist with the psychosocial facilitates an emphasis on voice and dialogic communication between participant and researcher not always captured in psychosocial approaches which tend towards favouring the interviewer as ‘good listener’. This emphasis on dialogue is important in research contexts where prior and ongoing relationships with professional participants make it difficult and indeed undesirable for researchers to maintain silence
    • 

    corecore