research

Atom-molecule equilibration in a degenerate Fermi gas with resonant interactions

Abstract

We present a nonequilibrium kinetic theory describing atom-molecule population dynamics in a two-component Fermi gas with a Feshbach resonance. Key collision integrals emerge that govern the relaxation of the atom-molecule mixture to chemical and thermal equilibrium. Our focus is on the pseudogap regime where molecules form above the superfluid transition temperature. In this regime, we formulate a simple model for the atom-molecule population dynamics. The model predicts the saturation of molecule formation that has been observed in recent experiments, and indicates that a dramatic enhancement of the atom-molecule conversion efficiency occurs at low temperatures.Comment: Updated manuscript on July 5, 2004. Four pages with three embedded figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020