3,293 research outputs found

    Cs adsorption on Si(001) surface: ab initio study

    Get PDF
    First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corresponds to 1 ML adsorption with two Cs atoms occupying the double layer model sites. While the 0.5 ML covered surface is of metallic nature, we found that 1 ML of Cs adsorption corresponds to saturation coverage and leads to a semiconducting surface. The results for the electronic behavior and surface work function suggest that adsorption of Cs takes place via polarized covalent bonding.Comment: 8 pages, 7 figure

    Collider design issues based on proton-driven plasma wakefield acceleration

    Full text link
    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron-positron linear collider and an electron-proton collider based on existing CERN accelerator infrastructure

    A plasma wakefield acceleration experiment using CLARA beam

    Get PDF
    We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed

    Influence of steps on the tilting and adsorption dynamics of ordered Pn films on vicinal Ag(111) surfaces

    Get PDF
    Here we present a structural study of pentacene (Pn) thin films on vicinal Ag(111) surfaces by He atom diffraction measurements and density functional theory (DFT) calculations supplemented with van der Waals (vdW) interactions. Our He atom diffraction results suggest initial adsorption at the step edges evidenced by initial slow specular reflection intensity decay rate as a function of Pn deposition time. In parallel with the experimental findings, our DFT+vdW calculations predict the step edges as the most stable adsorption site on the surface. An isolated molecule adsorbs as tilted on the step edge with a binding energy of 1.4 eV. In addition, a complete monolayer (ML) with pentacenes flat on the terraces and tilted only at the step edges is found to be more stable than one with all lying flat or tilted molecules, which in turn influences multilayers. Hence our results suggest that step edges can trap Pn molecules and act as nucleation sites for the growth of ordered thin films with a crystal structure similar to that of bulk Pn.Comment: 4 pages, 4 figures, 1 tabl

    Counter-propagating entangled photons from a waveguide with periodic nonlinearity

    Full text link
    The conditions required for spontaneous parametric down-conversion in a waveguide with periodic nonlinearity in the presence of an unguided pump field are established. Control of the periodic nonlinearity and the physical properties of the waveguide permits the quasi-phase matching equations that describe counter-propagating guided signal and idler beams to be satisfied. We compare the tuning curves and spectral properties of such counter-propagating beams to those for co-propagating beams under typical experimental conditions. We find that the counter-propagating beams exhibit narrow bandwidth permitting the generation of quantum states that possess discrete-frequency entanglement. Such states may be useful for experiments in quantum optics and technologies that benefit from frequency entanglement.Comment: submitted to Phys. Rev.

    The Design and Cytotoxic Evaluation of Some 1-Aryl-3- isopropylamino-1-propanone Hydrochlorides towards Human Huh-7 Hepatoma Cells

    Get PDF
    Cataloged from PDF version of article.A series of 1-aryl-3-isopropylamino-1-propanone hydrochlorides 1 and a related heterocyclic analog 2 as candidate antineoplastic agents were prepared and the rationale for designing these compounds is presented. A specific objective in this study is the discovery of novel compounds possessing growth-inhibiting properties of hepatoma cells. The compounds in series 1 and 2 were prepared and their structures established unequivocally. X-ray crystallography of two representative compounds 1d and 1g were achieved. Over half of the compounds are more potent than 5-fluorouracil which is an established drug used in treating liver cancers. QSAR evaluations and molecular modeling studies were undertaken with a view to detecting some physicochemical parameters which govern cytotoxic potencies. A number of guidelines for amplification of the project have been formulated. A number of Mannich bases displayed greater potency than the reference drug 5-fluorouracil against human Huh-7 hepatoma cells. In particular, 1i emerged as a lead compound possessing 2.8 fold higher activity than that of the reference drug. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Multi-Parameter Entanglement in Femtosecond Parametric Down-Conversion

    Get PDF
    A theory of spontaneous parametric down-conversion, which gives rise to a quantum state that is entangled in multiple parameters, such as three-dimensional wavevector and polarization, allows us to understand the unusual characteristics of fourth-order quantum interference in many experiments, including ultrafast type-II parametric down-conversion, the specific example illustrated in this paper. The comprehensive approach provided here permits the engineering of quantum states suitable for quantum information schemes and new quantum technologies.Comment: to appear in Physical Review

    The electron accelerator for the AWAKE experiment at CERN

    Get PDF
    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented

    Large-scale quantum-emitter arrays in atomically thin semiconductors.

    Get PDF
    Quantum light emitters have been observed in atomically thin layers of transition metal dichalcogenides. However, they are found at random locations within the host material and usually in low densities, hindering experiments aiming to investigate this new class of emitters. Here, we create deterministic arrays of hundreds of quantum emitters in tungsten diselenide and tungsten disulphide monolayers, emitting across a range of wavelengths in the visible spectrum (610-680 nm and 740-820 nm), with a greater spectral stability than their randomly occurring counterparts. This is achieved by depositing monolayers onto silica substrates nanopatterned with arrays of 150-nm-diameter pillars ranging from 60 to 190 nm in height. The nanopillars create localized deformations in the material resulting in the quantum confinement of excitons. Our method may enable the placement of emitters in photonic structures such as optical waveguides in a scalable way, where precise and accurate positioning is paramount
    corecore