1,040 research outputs found

    Digital multichannel photometer

    Get PDF
    System was developed for use in astronomy and other research areas concerned with detection of faint-light images. Photometer system is comparable in performance to good photomultiplier tube array except that digital electronics are used instead of analog

    Global electric field determination in the Earth's outer magnetosphere using charged particles

    Get PDF
    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental (for a zeroeth order magnetohydrodynamic (MHD) equilibrium) measurement was made infrequently and with poor spatial coverage: the global electric field. This oversight is in part due to the difficulty of measuring a plasma electric field, and in part due to the difficulty of measuring a plasma electric field, and in part due to the neglect of theorists. However, there is renewed interest in the convection electric field, since it has been realized that it is vital for understanding many aspects of the magnetosphere: the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere-ionosphere coupling, ring current and radiation belt transport, substorm injections, acceleration mechanisms, etc. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models), and we are left with an overly simplistic theoretical field, the Volland-Stern electric field mode. Again, single point measurements of the plasma pause were used to infer the appropriate amplitudes of the model, parameterized by Kp (Maynard & Chen, JGR 1975). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 15 years. However, the data sets being taken today require a great deal more accuracy than can be provided by the Volland-Stern model. Nor has the variability of the electric field shielding been properly addressed, although effects of penetrating magnetospheric electric fields has been seen in mid- and low-latitude ionospheric data sets. The growing interests in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections. Thus, we proposed and developed algorithms for extracting electric fields from particle data taken in the earth's magnetosphere. As a test of the effectiveness of these techniques, we analyzed data taken by the AMPTE/CCE spacecraft in equatorial orbit between 1984-1988. Some analytic tools had to be developed before construction of computer algorithms, and they are discussed

    Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    Get PDF
    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration

    Radiation environment along the INTEGRAL orbit measured with the IREM monitor

    Full text link
    The INTEGRAL Radiation Environment Monitor (IREM) is a payload supporting instrument on board the INTEGRAL satellite. The monitor continually measures electron and proton fluxes along the orbit and provides this information to the spacecraft on board data handler. The mission alert system broadcasts it to the payload instruments enabling them to react accordingly to the current radiation level. Additionally, the IREM conducts its autonomous research mapping the Earth radiation environment for the space weather program. Its scientific data are available for further analysis almost without delay.Comment: 5 pages, 7 figures, accepted for publication in A+A letter

    Are infestations of Cymomelanodactylus killing Acropora cytherea in the Chagos archipelago?

    Get PDF
    Associations between branching corals and infaunal crabs are well known, mostly due to the beneficial effects of Trapezia and Tetralia crabs in protecting host corals from crown-of-thorns starfish (e.g., Pratchett et al. 2000) and/or sedimentation (Stewart et al. 2006). These crabs are obligate associates of live corals and highly prevalent across suitable coral hosts, with 1–2 individuals per colony (Patton 1994). Cymo melanodactylus (Fig. 1) are also prevalent in branching corals, mostly Acropora, and are known to feed on live coral tissue, but are generally found in low abundance (<3 per colony) and do not significantly affect their host corals (e.g., Patton 1994). In the Chagos archipelago, however, infestations of Cymo melanodactylus were found on recently dead and dying colonies of Acropora cytherea

    REDS—Conceptual Approach to a Single Comparative Quality Standard Measurement Using Accepted Universal Attributes

    Get PDF
    Quality can be a difficult commodity to quantify in measurable terms. Often exclusive singular aspects are taken as a defining attribute which focuses upon the author’s view pertinent to their discipline. However, from the end users perspective a more holistic and meaningful collective measurement may invoke a differing perspective that defines quality which differs from the originators view. This monograph seeks to homogenise the originator and end user perspective of defining quality through measurement by combining several attributes that go to make up quality. Further by rationalising and combining and so measuring these attributes both the originator and end user see the result through the same perspective. Further the originator has a comparable measurement to improve or refine quality that the end user can easily see and verify. Key words: Quality; Universal attributes; Measurement; Comparativ

    Weld geometry strength effect in 2219-T87 aluminum

    Get PDF
    A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input

    Considerations on repeated repairing of weldments in Inconel 718 alloy

    Get PDF
    The effects of repeated weld repairs on the metallurgical characteristics, high cycle fatigue (HCF), and tensile properties of Inconel 718 butt weld joints were determined. A 1/4 in thick plate and a 1/2 in thick plate were used as well as tungsten inert gas welding, and Inconel 718 filler wire. Weld panels were subjected to 2, 6, and 12 repeated repairs and were made in a highly restrained condition. Post weld heat treatments were also conducted with the welded panel in the highly restrained condition. Results indicate that no significant metallurgical anomaly is evident as a result of up to twelve repeated weld repairs. No degradation in fatigue life is noted for up to twelve repeated repairs. Tensile results from specimens which contained up to twelve repeated weld repairs revealed no significant degradation in UTS and YS. However, a significant decrease in elongation is evident with specimens (solution treated and age hardened after welding) which contained twelve repeated repairs. The elongation loss is attributed to the presence of a severe notch on each side (fusion line) of the repair weld bead reinforcement

    A Revolutionary Lunar Space Transportation System Architecture Using Extraterrestrial Lox-augmented NTR Propulsion

    Get PDF
    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on each piloted round trip mission. As the initial lunar outposts grow to centralized bases and settlements with a substantial permanent human presence, a LANTR-powered shuttle capable of 36 to 24 hour 'one-way' trip times to the moon and back becomes possible with initial mass in low earth orbit (IMLEO) requirements of approximately 160 to 240 metric tons, respectively
    • …
    corecore