198 research outputs found

    Practical observations on the performance of bare silica in hydrophilic interaction compared with C18 reversed-phase liquid chromatography

    Get PDF
    The kinetic performance of a bare silica and C18 phase prepared from the same sub-2. Ī¼m and 3.5. Ī¼m base materials were compared in the HILIC and RP mode using both charged and neutral solutes. The HILIC column was characterised using the neutral solute 5-hydroxymethyluridine, the weak base cytosine, and the strong base nortriptyline, the latter having sufficient retention also in the RP mode to allow comparison of performance. Naphthalene was also used as a simple neutral substance to evaluate the RP column alone. The retention factors of all substances were adjusted to give similar values (k'. ~. 5.5) at their respective optimum linear velocities. Reduced van Deemter b-coefficients (determined by curve fitting and by the peak parking method, using a novel procedure involving switching to a dummy column) were significantly lower in HILIC for all substances compared with those found under RP conditions. Against expectation, c-coefficients were always lower in RP when compared with HILIC using sub-2. Ī¼m particles. While measurement of these coefficients is complicated by retention shifts caused by the influence of high pressure and by frictional heating effects, broadly similar results were obtained on larger particle (3.5. Ī¼m) phases. The mechanism of the separations was further investigated by examining the effect of buffer concentration on retention. It was concluded that HILIC can sometimes show somewhat inferior performance to RP for fast analysis at high mobile phase velocity, but clearly shows advantages when high column efficiencies, using longer columns at low flow velocity, are employed. The latter result is attributable to the lower viscosity of the mobile phase in HILIC and the reduced pressure requirement as well as the lower b-coefficients. Ā© 2014 David V. McCalley

    Retention characteristics of some antibiotic and anti-retroviral compounds in hydrophilic interaction chromatography using isocratic elution, and gradient elution with repeatable partial equilibration

    Get PDF
    Ā© 2018 Elsevier B.V. The separation of some zwitterionic, basic and neutral antibiotic and antiretroviral compounds was studied using hydrophilic interaction chromatography (HILIC) on bare silica, bonded amide and urea superficially porous phases. The differences in the selectivity and retentivity of these stationary phases were evaluated for compounds with widely different physicochemical properties (logD āˆ’3.43 to 2.41 at ww pH 3.0). The mobile phase was acetonitrile-ammonium formate buffered at low ww pH. Compounds containing quinolone and serine groups showed poor peak shapes on all columns, attributed to metal-oxide interactions with system metals. Peak shapes were improved by addition of citrate buffers. Gradient elution, particularly with regard to column equilibration, was also studied due to the large differences in retention factors observed under isocratic conditions. Full equilibration in HILIC was slow for both ionogenic and neutral solutes, requiring as much as āˆ¼40 column volumes. However, highly repeatable partial equilibration, suitable for gradient elution, was achieved in only a few minutes. Pronounced selectivity differences in the separations were shown dependent on the partial equilibration time

    Persuading consumers to reduce their consumption of electricity in the home

    Get PDF
    Previous work has identified that providing real time feedback or interventions to consumers can persuade consumers to change behaviour and reduce domestic electricity consumption. However, little work has investigated what exactly those feedback mechanisms should be. Most past work is based on an in-home display unit, possibly complemented by lower tariffs and delayed use of non-essential home appliances such as washing machines. In this paper we focus on four methods for real time feedback on domestic energy use, developed to gauge the impact on energy consumption in homes. Their feasibility had been tested using an experimental setup of 24 households collecting minute-by-minute electricity consumption data readings over a period of 18 months. Initial results are mixed, and point to the difficulties of sustaining a reduction in energy consumption, i.e. persuading consumers to change their behaviour. Some of the methods we used exploit small group social dynamics whereby people want to conform to social norms within groups they identify with. It may be that a variety of feedback mechanisms and interventions are needed in order to sustain user interest

    Performance of charged aerosol detection with hydrophilic interaction chromatography

    Get PDF
    Ā© 2015 The Authors. The performance of the charged aerosol detector (CAD) was investigated using a diverse set of 29 solutes, including acids, bases and neutrals, over a range of mobile phase compositions, particularly with regard to its suitability for use in hydrophilic interaction chromatography (HILIC). Flow injection analysis was employed as a rapid method to study detector performance. CAD response was 'quasi-universal', strong signals were observed for compounds that have low volatility at typical operating (room) temperature. For relatively involatile solutes, response was reasonably independent of solute chemistry, giving variation of 12-18% RSD from buffered 95% ACN (HILIC) to 10% ACN (RP). Somewhat higher response was obtained for basic compared with neutral solutes. For cationic basic solutes, use of anionic reagents of increasing size in the mobile phase (formic, trifluoroacetic and heptafluorobutyric acid) produced somewhat increased detector response, suggesting that salt formation with these reagents is contributory. However, the increase was not stoichiometric, pointing to a complex mechanism. In general, CAD response increased as the concentration of acetonitrile in the mobile phase was increased from highly aqueous (10% ACN) to values typical in the HILIC range (80-95% ACN), with signal to noise ratios about four times higher than those for the RP range. The response of the CAD is non-linear. Equations describing aerosol formation cannot entirely explain the shape of the plots. Limits of detection (determined with a column for solutes of low k) under HILIC conditions were of the order of 1-3. ng on column, which compares favourably with other universal detectors. CAD response to inorganic anions allows observation of the independent movement through the column of the cationic and anionic constituents of basic drugs, which appear to be accompanied by mobile phase counterions, even at quite high solute concentrations

    Some factors that can lead to poor peak shape in hydrophilic interaction chromatography, and possibilities for their remediation

    Get PDF
    Ā© 2015 Elsevier B.V. Some factors which present difficulties for obtaining good peak shape in hydrophilic interaction chromatography (HILIC) were studied. The effect of injection solvent composition and volume was systematically investigated using a selection of weak and stronger basic compounds on a hybrid bare silica phase. Increasing the mismatch between the injection solvent (range 95-0% ACN v/v) and the mobile phase (maintained at 95% ACN v/v) gave increasing deterioration in peak shape. With the 2.1 mm ID columns used, injections in the mobile phase of increasing volume (1-20 Ī¼L) gave poorer peak shape, but the magnitude of the effect was considerably smaller than that of solvent mismatch over this range. Some solute structural features such as galloyl (trihydroxy benzene), catechol (benzene diol) and phosphate (in nucleotides) gave serious peak tailing, attributed to interactions with metals in the stationary phase or the chromatographic hardware. These undesirable effects can be moderated by including complexing agents in the mobile phase, by changing the stationary phase chemistry, or by altering the mobile phase pH

    In situ permafrost thaw due to climate change drives holistic microbial community shifts with implications for methane cycling

    Get PDF
    Thawing permafrost is a potentially significant source of radiative forcing feedback due to increased emissions of methane, a biogenic greenhouse gas (GHG). This study investigated changes in the microbial community along a permafrost thaw gradient at Stordalen Mire, Sweden using 16S rRNA gene amplicon and metagenomic methods. In situ measurements of geochemical parameters, including CH4 and C isotopes, enabled linkage of community dynamics to significant shifts in C balance. The thaw gradient ranged from intact at a palsa (low productivity and GHG emissions), through partially thawed in a bog (high productivity, low GHG emissions) to a completely thawed fen (high productivity and GHG emissions). Microbial assemblages in both the palsa and fen were highly diverse (in both richness and evenness), consistent with climax communities. The microbial community in the bog had distinctly lower diversity, characteristic of ecosystem disturbance. The palsa community was dominated by Acidobacteria and Proteobacteria, as is typical of a range of soils including permafrost. Methanogens dominated both the bog and fen and were most abundant within the zone of water table fluctuation. Inferring methanogensā€™ production pathway from phylogeny showed a shift from mostly hydrogenotrophic methanogens in the bog towards acetotrophic methanogens in the fen. This corroborated porewater and flux emitted CH4 and CO2 carbon isotopic 13C signatures of CH4 and CO2. The fen, where the highest CH4 flux was recorded, was significantly richer in methanogenic archaea. A novel archaea, Candidatus Methanoflorens stordalenmirensis, was present at up to 70% relative abundance in the bog, enabling recovery of a population genome. The genome (and associated metaproteome) of ā€™M. stordalenmirensisā€™ indicates that hydrogenotrophic methane production is its main energy conservation pathway. ā€™Methanoflorensā€™ may be an indicator species of permafrost thaw, it is globally ubiquitous, and appears a major contributor to global methane production. Our results revealed a distinct difference in the microbial community structure and membership at each site, which can be directly associated with increasing methane emission and thaw state

    Software implementation of online risk-based security assessment

    Full text link

    Affordances, constraints and information flows as ā€˜leverage pointsā€™ in design for sustainable behaviour

    Get PDF
    Copyright @ 2012 Social Science Electronic PublishingTwo of Donella Meadows' 'leverage points' for intervening in systems (1999) seem particularly pertinent to design for sustainable behaviour, in the sense that designers may have the scope to implement them in (re-)designing everyday products and services. The 'rules of the system' -- interpreted here to refer to affordances and constraints -- and the structure of information flows both offer a range of opportunities for design interventions to in fluence behaviour change, and in this paper, some of the implications and possibilities are discussed with reference to parallel concepts from within design, HCI and relevant areas of psychology
    • ā€¦
    corecore