1,371 research outputs found

    The Lyman Break Galaxies: their Progenitors and Descendants

    Get PDF
    We study the evolution of Lyman Break Galaxies (LBGs) from z=5 to z=0 by tracing the merger trees of galaxies in a large-scale hydrodynamic simulation based on a Lambda cold dark matter model. In particular, we emphasize on the range of properties of the sample selected by the rest-frame V band luminosity, in accordance with recent near-IR observations. The predicted rest-frame V band luminosity function agrees well with the observed one when dust extinction is taken into account. The stellar content and the star formation histories of LBGs are also studied. We find that the LBGs intrinsically brighter than Mv=-21.0 at z=3 have stellar masses of at least 10^9\Msun, with a median of 10^{10}h^{-1}\Msun. The brightest LBGs (Mv<-23) at z=3 merge into clusters/groups of galaxies at z=0, as suggested from clustering studies of LBGs. Roughly one half of the galaxies with -23<Mv<-22 at z=3 fall into groups/clusters, and the other half become typical L* galaxies at z=0 with stellar mass of ~10^{11}\Msun. Descendants of LBGs at the present epoch have formed roughly 30% of their stellar mass by z=3, and the half of their current stellar population is 10 Gyr old, favoring the scenario that LBGs are the precursors of the present day spheroids. We find that the most luminous LBGs have experienced a starburst within 500 Myr prior to z=3, but also have formed stars continuously over a period of 1 Gyr prior to z=3 when all the star formation in progenitors is coadded. We also study the evolution of the mean stellar metallicity distribution of galaxies, and find that the entire distribution shifts to lower metallicity at higher redshift. The observed sub-solar metallicity of LBGs at z=3 is naturally predicted in our simulation.Comment: 29 pages, including 11 figures, ApJ in press. One reference adde

    Distribution of Damped Lyman-alpha Absorbers in a Lambda Cold Dark Matter Universe

    Full text link
    We present the results of a numerical study of a galactic wind model and its implications on the properties of damped Lyman-alpha absorbers (DLAs) using cosmological hydrodynamic simulations. We vary both the wind strength and the internal parameters of the the wind model in a series of cosmological SPH simulations that include radiative cooling and heating by a UV background, star formation, and feedback from supernovae and galactic winds. To test our simulations, we examine the DLA `rate-of-incidence' as a function of halo mass, galaxy apparent magnitude, and impact parameter. We find that the statistical distribution of DLAs does not depend on the exact values of internal numerical parameters that control the decoupling of hydrodynamic forces when the gas is ejected from starforming regions. The DLA rate-of-incidence in our simulations at z=3 is dominated by the faint galaxies with apparent magnitude R_AB < 25.5. However, interestingly in a `strong wind' run, the differential distribution of DLA sight-lines is peaked at Mhalo = 10^{12} Msun/h (R_AB~27), and the mean DLA halo mass is Mmean=10^{12.4} Msun/h (R_AB ~ 26). These mass-scales are much larger than those if we ignore winds, because galactic wind feedback suppresses the DLA cross section in low-mass halos and increases the relative contribution to the DLA incidence from more massive halos. The DLAs in our simulations are more compact than the present-day disk galaxies, and the impact parameter distribution is very narrow unless we limit the search for the host galaxy to only bright LBGs. The comoving number density of DLAs is higher than that of LBGs down to R_AB=30 mag if the physical radius of each DLA is smaller than 5 kpc/h_70. We discuss conflicts between current simulations and observations, and potential problems with simulations based on the CDM model.Comment: 37 pages, 11 figures. Accepted to ApJ. Additional numerical tests of the internal parameters of the galactic wind model are presente

    Massive galaxies in cosmological simulations: UV-selected sample at redshift z=2

    Full text link
    We study the properties of galaxies at z=2 in a Lambda CDM universe, using two different types of hydrodynamic simulation methods (Eulerian TVD and SPH) and a spectrophotometric analysis in the Un, G, R filter set. The simulated galaxies at z=2 satisfy the color-selection criteria proposed by Adelberger et al. (2004) when we assume Calzetti extinction with E(B-V)=0.15. We find that the number density of simulated galaxies brighter than R<25.5 at z=2 is about 2e-2 h^3/Mpc^3, roughly one order of magnitude larger than that of Lyman break galaxies at z=3. The most massive galaxies at z=2 have stellar masses >~1e11 Msun, and their observed-frame G-R colors lie in the range 0.0<G-R<1.0. They typically have been continuously forming stars with a rate exceeding 30 Msun/yr over a few Gyrs from z=10 to z=2, although the TVD simulation indicates a more sporadic star formation history than the SPH simulations. Of order half of their stellar mass was already assembled by z~4. The reddest massive galaxies at z=2 with G-R >= 1.0 and Mstar>1e10 Msun/h finished the build-up of their stellar mass by z~3. Interestingly, our study suggests that the majority of the most massive galaxies at z=2 should be detectable at rest-frame UV wavelengths, contrary to some recent claims made on the basis of near-IR studies of galaxies at the same epoch, provided the median extinction is less than E(B-V)<0.3. However, our results also suggest that the fraction of stellar mass contained in galaxies that pass the color-selection criteria could be as low as 50% of the total stellar mass in the Universe at z=2. Our simulations suggest that the missing stellar mass is contained in fainter (R>25.5) and intrinsically redder galaxies. Our results do not suggest that hierarchical galaxy formation fails to account for the massive galaxies at z>=1. (abridged)Comment: 35 pages, 11 figures. Submitted to ApJ. Error in AB magnitude calculation corrected. Higher resolution version available at http://cfa-www.harvard.edu/~knagamine/redgal.ps.g

    Hyperfine Populations Prior to Muon Capture

    Full text link
    It is shown that the 1S level hyperfine populations prior to muon capture will be statistical when either target or beam are unpolarised independent of the atomic level at which the hyperfine interaction becomes appreciable. This assertion holds in the absence of magnetic transitions during the cascade and is true because of minimal polarisation after atomic capture and selective feeding during the cascade.Comment: (revtex, 6 preprint pages, no figures

    Detectability of [CII] 158 micron emission from high-redshift galaxies: predictions for ALMA and SPICA

    Full text link
    We discuss the detectability of high-redshift galaxies via [CII] 158 micron line emission by coupling an analytic model with cosmological Smoothed Particle Hydrodynamics (SPH) simulations that are based on the concordance Lambda cold dark matter (CDM) model. Our analytic model describes a multiphase interstellar medium irradiated by the far ultra-violet radiation from local star-forming regions, and it calculates thermal and ionization equilibrium between cooling and heating. The model allows us to predict the mass fraction of a cold neutral medium (CNM) embedded in a warm neutral medium (WNM). Our cosmological SPH simulations include a treatment of radiative cooling/heating, star formation, and feedback effects from supernovae and galactic winds. Using our method, we make predictions for the [CII] luminosity from high-redshift galaxies which can be directly compared with upcoming observations by the Atacama Large Millimeter Array (ALMA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA). We find that the number density of high-redshift galaxies detectable by ALMA and SPICA via [CII] emission depends significantly on the amount of neutral gas which is highly uncertain. Our calculations suggest that, in a CDM universe, most [CII] sources at z=3 are faint objects with \Snu < 0.01 mJy. Lyman-break galaxies (LBGs) brighter than R_AB=23.5 mag are expected to have flux densities \Snu = 1-3 mJy depending on the strength of galactic wind feedback. The recommended observing strategy for ALMA and SPICA is to aim at very bright LBGs or star-forming DRG/BzK galaxies.Comment: 39 pages, 13 figures, accepted to ApJ. Matched to the accepted versio

    Imaging the cool gas, dust, star formation, and AGN in the first galaxies

    Get PDF
    When, and how, did the first galaxies and supermassive black holes (SMBH) form, and how did they reionization the Universe? First galaxy formation and cosmic reionization are among the last frontiers in studies of cosmic structure formation. We delineate the detailed astrophysical probes of early galaxy and SMBH formation afforded by observations at centimeter through submillimeter wavelengths. These observations include studies of the molecular gas (= the fuel for star formation in galaxies), atomic fine structure lines (= the dominant ISM gas coolant), thermal dust continuum emission (= an ideal star formation rate estimator), and radio continuum emission from star formation and relativistic jets. High resolution spectroscopic imaging can be used to study galaxy dynamics and star formation on sub-kpc scales. These cm and mm observations are the necessary compliment to near-IR observations, which probe the stars and ionized gas, and X-ray observations, which reveal the AGN. Together, a suite of revolutionary observatories planned for the next decade from centimeter to X-ray wavelengths will provide the requisite panchromatic view of the complex processes involved in the formation of the first generation of galaxies and SMBHs, and cosmic reionization.Comment: 8 pages total. White paper submitted to the Astro 2010 Decadal Surve

    Tuning the antiferromagnetic easy axis direction in exchange bias bilayers

    Get PDF
    Abstract The exchange bias effect is measured for a Co/NiO bilayer before and after it has been cooled down from 580 K in 1.5 kOe magnetic field applied at 45 to the initial exchange-bias direction. The angular variation of the hysteresis loop shift for the treated sample showed three distinct minima and maxima, in contrast to that of the as-made sample, which is characteristic for a system with aligned ferromagnetic and antiferromagnetic easy axes. This behavior is qualitatively well explained in the framework of the domain-wall formation model applied for the off-aligned case. The continued interest in the exchange-bias effect, which results from the interfacial coupling between ferromagnetic (FM) and antiferromagnetic (AF) materials, is motivated by fundamental and technological interests. In almost all of the model works, the direction of the easy axis of the AF layer is aligned with the FM one; some numerical calculations using a simple StonerWohlfarth model for the case of &apos;&apos;off-aligned&apos;&apos; coupling have been done by Xi and White In the present work, a FM/AF bilayer was deposited by magnetron sputtering onto Si(1 0 0) substrate at room temperature (RT) in 2.0 mTorr Ar atmosphere with base pressure before depositing better than 5 Â 10 À8 Torr. The film consists of 30 nm Co deposited on 50 nm NiO and capped with 5 nm Cu in order to prevent oxidation in air. Magnetic field of 0.5 kOe has been applied during the deposition. The structural characterization, made via conventional X-ray diffractometry performed on a Philips X&apos;Pert MRD machine employing Cu Ka radiation, showed that the Co layer is strongly (2 2 0) textured, whereas the NiO contribution is a combination of evenly divided (1 1 1) and (2 0 0) NiO textures. In-plane RT hysteresis loops were obtained by using an alternating gradient force magnetometer. No training effect, i.e., dependence of the hysteresis loop field shift, H eb ; on repeated magnetization reversal, has been observed. The sample was heated to 580 K, which is higher than the NiO N! eel temperature of 520 K but rather lower than the Curie temperature of Co, and then cooled down to RT in the presence of a magnetic field of 1.5 kOe applied at 45 (75) to the initial exchange-bias direction. Once again, effects of training have not been detected

    The K20 survey. VI. The Distribution of the Stellar Masses in Galaxies up to z~2

    Full text link
    We present a detailed analysis of the stellar mass content of galaxies up to z=2.5 in the K20 galaxy sample, that has a 92% spectroscopic completeness and a complete UBVRIzJKsUBVRIzJK_s multicolor coverage. We find that the M/L ratio decreases with redshift: in particular, the average M/L ratio of early type galaxies decreases with zz, with a scatter that is indicative of a range of star--formation time-scales and redshift of formation. More important, the typical M/L of massive early type galaxies is larger than that of less massive ones, suggesting that their stellar population formed at higher z. The final K20 galaxy sample spans a range of stellar masses from M*=10^9Msun to M*=10^12Msun, with massive galaxies ($M*>10^11Msun) detected up to z~2. We compute the Galaxy Stellar Mass Function at various z, of which we observe only a mild evolution (i.e. by 20-30%) up to z~1. At z>1, the evolution of the GSMF appears to be much faster: at z~2, about 35% of the present day stellar mass in objects with M*~10^11Msun appear to have assembled. We also detect a change in the physical nature of the most massive galaxies, since at z>1 a population of massive star--forming galaxies progressively appears. We finally analyze our results in the framework of Lambda-CDM hierarchical models. First, we show that the large number of massive galaxies detected at high z does not violate any fundamental Lambda-CDM constraint based on the number of massive DM halos. Then, we compare our results with the predictions of renditions of both semianalytic and hydro-dynamical models, that range from severe underestimates to slight overestimates of the observed mass density at z<~2. We discuss how the differences among these models are due to the different implementation of the main physical processes. (Abridged)Comment: Accepted for publication on Astronomy & Astrophysic

    A new measurement of the evolving near-infrared galaxy luminosity function out to z~4: a continuing challenge to theoretical models of galaxy formation

    Full text link
    We present the most accurate measurement to date of cosmological evolution of the near-infrared galaxy luminosity function, from the local Universe out to z~4. The analysis is based on a large and highly complete sample of galaxies selected from the first data release of the UKIDSS Ultra Deep Survey. Exploiting a master catalogue of K- and z-band selected galaxies over an area of 0.7 square degrees, we analyse a sample of ~50,000 galaxies, all with reliable photometry in 16-bands from the far-ultraviolet to the mid-infrared. The unique combination of large area and depth provided by the Ultra Deep Survey allows us to trace the evolution of the K-band luminosity function with unprecedented accuracy. In particular, via a maximum likelihood analysis we obtain a simple parameterization for the luminosity function and its cosmological evolution, including both luminosity and density evolution, which provides an excellent description of the data from z =0 up to z~4. We find differential evolution for galaxies dependent on galaxy luminosity, revealing once again the ``down-sizing behaviour'' of galaxy formation. Finally, we compare our results with the predictions of the latest theoretical models of galaxy formation, based both on semi-analytical prescriptions, and on full hydrodynamical simulations.Comment: 11 pages, 6 figures, submitted to MNRA

    The First Cold Antihydrogen

    Full text link
    Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter. This paper describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and Related Topics, to be published in NIM
    • 

    corecore