561 research outputs found
Acoustic radiation controls friction: Evidence from a spring-block experiment
Brittle failures of materials and earthquakes generate acoustic/seismic waves
which lead to radiation damping feedbacks that should be introduced in the
dynamical equations of crack motion. We present direct experimental evidence of
the importance of this feedback on the acoustic noise spectrum of
well-controlled spring-block sliding experiments performed on a variety of
smooth surfaces. The full noise spectrum is quantitatively explained by a
simple noisy harmonic oscillator equation with a radiation damping force
proportional to the derivative of the acceleration, added to a standard viscous
term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR
Neutron matter at zero temperature with auxiliary field diffusion Monte Carlo
The recently developed auxiliary field diffusion Monte Carlo method is
applied to compute the equation of state and the compressibility of neutron
matter. By combining diffusion Monte Carlo for the spatial degrees of freedom
and auxiliary field Monte Carlo to separate the spin-isospin operators, quantum
Monte Carlo can be used to simulate the ground state of many nucleon systems
(A\alt 100). We use a path constraint to control the fermion sign problem. We
have made simulations for realistic interactions, which include tensor and
spin--orbit two--body potentials as well as three-nucleon forces. The Argonne
and two nucleon potentials plus the Urbana or Illinois
three-nucleon potentials have been used in our calculations. We compare with
fermion hypernetted chain results. We report results of a Periodic Box--FHNC
calculation, which is also used to estimate the finite size corrections to our
quantum Monte Carlo simulations. Our AFDMC results for models of pure
neutron matter are in reasonably good agreement with equivalent Correlated
Basis Function (CBF) calculations, providing energies per particle which are
slightly lower than the CBF ones. However, the inclusion of the spin--orbit
force leads to quite different results particularly at relatively high
densities. The resulting equation of state from AFDMC calculations is harder
than the one from previous Fermi hypernetted chain studies commonly used to
determine the neutron star structure.Comment: 15 pages, 15 tables and 5 figure
Spin-Isospin Structure and Pion Condensation in Nucleon Matter
We report variational calculations of symmetric nuclear matter and pure
neutron matter, using the new Argonne v18 two-nucleon and Urbana IX
three-nucleon interactions. At the equilibrium density of 0.16 fm^-3 the
two-nucleon densities in symmetric nuclear matter are found to exhibit a
short-range spin-isospin structure similar to that found in light nuclei. We
also find that both symmetric nuclear matter and pure neutron matter undergo
transitions to phases with pion condensation at densities of 0.32 fm^-3 and 0.2
fm^-3, respectively. Neither transtion occurs with the Urbana v14 two-nucleon
interaction, while only the transition in neutron matter occurs with the
Argonne v14 two-nucleon interaction. The three-nucleon interaction is required
for the transition to occur in symmetric nuclear matter, whereas the the
transition in pure neutron matter occurs even in its absence. The behavior of
the isovector spin-longitudinal response and the pion excess in the vicinity of
the transition, and the model dependence of the transition are discussed.Comment: 44 pages RevTeX, 15 postscript figures. Minor modifications to
original postin
Four-Body Bound State Calculations in Three-Dimensional Approach
The four-body bound state with two-body interactions is formulated in
Three-Dimensional approach, a recently developed momentum space representation
which greatly simplifies the numerical calculations of few-body systems without
performing the partial wave decomposition. The obtained three-dimensional
Faddeev-Yakubovsky integral equations are solved with two-body potentials.
Results for four-body binding energies are in good agreement with achievements
of the other methods.Comment: 29 pages, 2 eps figures, 8 tables, REVTeX
Grassroots Agency: Participation and Conflict in Buenos Aires Shantytowns seen through the Pilot Plan for Villa 7 (1971–1975)
open access articleIn 1971, after more than a decade of national and municipal policies aimed at the top-down removal of shantytowns, the Buenos Aires City Council approved the Plan Piloto para la Relocalización de Villa 7 (Pilot Plan for the Relocation of Shantytown 7; 1971–1975, referred to as the Pilot Plan hereinafter). This particular plan, which resulted in the construction of the housing complex, Barrio Justo Suárez, endures in the collective memory of Argentines as a landmark project regarding grassroots participation in state housing initiatives addressed at shantytowns. Emerging from a context of a housing shortage for the growing urban poor and intense popular mobilizations during the transition to democracy, the authors of the Pilot Plan sought to empower shantytown residents in novel ways by: 1) maintaining the shantytown’s location as opposed to eradication schemes that relocated the residents elsewhere, 2) formally employing some of the residents for the stage of construction, as opposed to “self-help” housing projects in which the residents contributed with unpaid labor, and 3) including them in the urban and architectural design of the of the new housing.
This paper will examine the context in which the Pilot Plan was conceived of as a way of re-assessing the roles of the state, the user, and housing-related professionals, often seen as antagonistic. The paper argues that residents’ fair participation and state intervention in housing schemes are not necessarily incompatible, and can function in specific social and political contexts through multiactor proposals backed by a political will that prioritizes grassroots agency
Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in 200 GeV Au+Au Collisions
A data-driven method was applied to measurements of Au+Au collisions at
200 GeV made with the STAR detector at RHIC to isolate
pseudorapidity distance -dependent and -independent
correlations by using two- and four-particle azimuthal cumulant measurements.
We identified a component of the correlation that is -independent,
which is likely dominated by anisotropic flow and flow fluctuations. It was
also found to be independent of within the measured range of
pseudorapidity . The relative flow fluctuation was found to be for particles of transverse momentum
less than GeV/. The -dependent part may be attributed to
nonflow correlations, and is found to be relative to the
flow of the measured second harmonic cumulant at
Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in at GeV
We report the observation of transverse polarization-dependent azimuthal
correlations in charged pion pair production with the STAR experiment in
collisions at RHIC. These correlations directly probe quark
transversity distributions. We measure signals in excess of five standard
deviations at high transverse momenta, at high pseudorapidities eta>0.5, and
for pair masses around the mass of the rho-meson. This is the first direct
transversity measurement in p+p collisions. Comparing the results to data from
lepton-nucleon scattering will test the universality of these spin-dependent
quantities.Comment: 11 pages, 5 figures, 15 tables. Submitted to PR
Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and meson in Au+Au collisions at = 200 GeV
We present high precision measurements of elliptic flow near midrapidity
() for multi-strange hadrons and meson as a function of
centrality and transverse momentum in Au+Au collisions at center of mass energy
200 GeV. We observe that the transverse momentum dependence of
and is similar to that of and , respectively,
which may indicate that the heavier strange quark flows as strongly as the
lighter up and down quarks. This observation constitutes a clear piece of
evidence for the development of partonic collectivity in heavy-ion collisions
at the top RHIC energy. Number of constituent quark scaling is found to hold
within statistical uncertainty for both 0-30 and 30-80 collision
centrality. There is an indication of the breakdown of previously observed mass
ordering between and proton at low transverse momentum in the
0-30 centrality range, possibly indicating late hadronic interactions
affecting the proton .Comment: 7 pages and 4 figures, Accepted for publication in Physical Review
Letter
- …