73 research outputs found
Cellular Skeletons: A New Approach to Topological Skeletons with Geometric Features
This paper introduces a new kind of skeleton for binary volumes called the cellular skeleton. This skeleton is not a subset of voxels of a volume nor a subcomplex of a cubical complex: it is a chain complex together with a reduction from the original complex.
Starting from the binary volume we build a cubical complex which represents it regarding 6 or 26-connectivity. Then the complex is thinned using the proposed method based on elementary collapses, which preserves significant geometric features. The final step reduces the number of cells using Discrete Morse Theory. The resulting skeleton is a reduction which preserves the homology of the original complex and the geometrical information of the output of the previous step.
The result of this method, besides its skeletonization content, can be used for computing the homology of the original complex, which usually provides well shaped homology generators
The observed diurnal cycle of low-level stratus clouds over southern West Africa: a case study
This study presents the first detailed observational analysis of
the complete diurnal cycle of stratiform low-level clouds (LLC) and involved
atmospheric processes over southern West Africa (SWA). The data used here
were collected during the comprehensive DACCIWA
(Dynamics-Aerosol-Chemistry-Cloud-Interactions in West Africa) ground-based
campaign, which aimed at monitoring LLC characteristics and capturing the
wide range of atmospheric conditions related to the West African monsoon
flow. In this study, in situ and remote sensing measurements from the
supersite near Savè (Benin) collected during a typical day, which is
characterized by the onset of a nocturnal low-level jet (NLLJ) and the
formation of LLC, are analyzed. The associated dynamic and thermodynamic
conditions allow the identification of five different phases related to the
LLC diurnal cycle: the stable, jet, stratus I, stratus II, and convective
phases. The analysis of relative humidity tendency shows that cooling is a
dominant process for LLC formation, which leads to a continuous increase in
relative humidity at a maximum rate of 6 % h−1, until finally saturation is reached and LLC form with a
cloud-base height near the height of NLLJ maximum. Results of heat budget
analysis illustrate that horizontal cold-air advection, related to the
maritime inflow, which brings the cool maritime air mass and a prominent NLLJ
wind profile, has the dominant role in the observed strong cooling of
−1.2 K h−1 during the jet phase. The contribution from horizontal
cold advection is quantified to be up to 68 %, while radiative cooling
and sensible heat flux divergence both contribute 16 % to the observed heat
budget below the NLLJ maximum. After the LLC form (stratus phases I and II),
turbulent mixing is an important factor leading to the cooling below the
cloud base, while strong radiative cooling at the cloud top helps to maintain
thick stratus.</p
Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3)
The water and energy transfers at the interface between the Earth's surface and the atmosphere should be correctly simulated in numerical weather and climate models. This implies the need for a realistic and accurate representation of land cover (LC), including appropriate parameters for each vegetation type. In some cases, the lack of information and crude representation of the surface lead to errors in the simulation of soil and atmospheric variables. This work investigates the ability of the Weather Research and Forecasting (WRF) model to simulate surface heat fluxes in a heterogeneous area of southern France using several possibilities for the surface representation. In the control experiments, we used the default LC database in WRF, which differed significantly from the actual LC. In addition, sub-grid variability was not taken into account since the model uses, by default, only the surface information from the dominant LC category in each pixel (dominant approach). To improve this surface simplification, we designed three new interconnected numerical experiments with three widely used land surface models (LSMs) in WRF. The first one consisted of using a more realistic and higher-resolution LC dataset over the area of analysis. The second experiment aimed at investigating the effect of using a mosaic approach; 30 m sub-grid surface information was used to calculate the final grid fluxes based on weighted averages from values obtained for each LC category. Finally, in the third experiment, we increased the model stomatal conductance for conifer forests due to the large flux errors associated with this vegetation type in some LSMs. The simulations were evaluated with gridded area-averaged fluxes calculated from five tower measurements obtained during the Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. The results from the experiments differed depending on the LSM and displayed a high dependency of the simulated fluxes on the specific LC definition within the grid cell, an effect that was enhanced with the dominant approach. The simulation of the fluxes improved using the more realistic LC dataset except for the LSMs that included extreme surface parameters for coniferous forest. The mosaic approach produced fluxes more similar to reality and served to particularly improve the latent heat flux simulation of each grid cell. Therefore, our findings stress the need to include an accurate surface representation in the model, including soil and vegetation sub-grid information with updated surface parameters for some vegetation types, as well as seasonal and man-made changes. This will improve the modelled heat fluxes and ultimately yield more realistic atmospheric processes in the model
Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer
Observations, mixed-layer theory and the Dutch Large-Eddy Simulation model (DALES) are used to analyze the dynamics of the boundary layer during an intensive operational period (1 July 2011) of the Boundary Layer Late Afternoon and Sunset Turbulence campaign. Continuous measurements made by remote sensing and in situ instruments in combination with radio soundings, and measurements done by remotely piloted aircraft systems and two manned aircrafts probed the vertical structure and the temporal evolution of the boundary layer during the campaign. The initial vertical profiles of potential temperature, specific humidity and wind, and the temporal evolution of the surface heat and moisture fluxes prescribed in the models runs are inspired by some of these observations. The research focuses on the role played by the residual layer during the morning transition and by the large-scale subsidence on the evolution of the boundary layer. By using DALES, we show the importance of the dynamics of the boundary layer during the previous night in the development of the boundary layer at the morning. DALES numerical experiments including the residual layer are capable of modeling the observed sudden increase of the boundary-layer depth during the morning transition and the subsequent evolution of the boundary layer. These simulations show a large increase of the entrainment buoyancy flux when the residual layer is incorporated into the mixed layer. We also examine how the inclusion of the residual layer above a shallow convective boundary layer modifies the turbulent kinetic energy budget. Large-scale subsidence mainly acts when the boundary layer is fully developed, and, for the studied day, it is necessary to be considered to reproduce the afternoon observations. Finally, we also investigate how carbon dioxide (CO2) mixing ratio stored the previous night in the residual layer plays a fundamental role in the evolution of the CO2 mixing ratio during the following day
Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats.
Reticulitermes santonensis is a subterranean termite that invades urban areas in France and elsewhere where it causes damage to human-built structures. We investigated the breeding system, colony and population genetic structure, and mode of dispersal of two French populations of R. santonensis. Termite workers were sampled from 43 and 31 collection points, respectively, from a natural population in west-central France (in and around the island of Oleron) and an urban population (Paris). Ten to 20 workers per collection point were genotyped at nine variable microsatellite loci to determine colony identity and to infer colony breeding structure. There was a total of 26 colonies, some of which were spatially expansive, extending up to 320 linear metres. Altogether, the analysis of genotype distribution, F-statistics and relatedness coefficients suggested that all colonies were extended families headed by numerous neotenics (nonwinged precocious reproductives) probably descended from pairs of primary (winged) reproductives. Isolation by distance among collection points within two large colonies from both populations suggested spatially separated reproductive centres with restricted movement of workers and neotenics. There was a moderate level of genetic differentiation (F(ST) = 0.10) between the Oleron and Paris populations, and the number of alleles was significantly higher in Oleron than in Paris, as expected if the Paris population went through bottlenecks when it was introduced from western France. We hypothesize that the diverse and flexible breeding systems found in subterranean termites pre-adapt them to invade new or marginal habitats. Considering that R. santonensis may be an introduced population of the North American species R. flavipes, a breeding system consisting primarily of extended family colonies containing many neotenic reproductives may facilitate human-mediated spread and establishment of R. santonensis in urban areas with harsh climates
Hybrid elms (Ulmus spp.): Adaptability in Paris and behaviour towards dutch elm disease (Ophiostoma novo-ulmi)
International audienc
Hybrid elms (Ulmus spp.): Adaptability in Paris and behaviour towards dutch elm disease (Ophiostoma novo-ulmi)
National audienc
- …