48 research outputs found

    Dynamic Switch of Negative Feedback Regulation in Drosophila Akt–TOR Signaling

    Get PDF
    Akt represents a nodal point between the Insulin receptor and TOR signaling, and its activation by phosphorylation controls cell proliferation, cell size, and metabolism. The activity of Akt must be carefully balanced, as increased Akt signaling is frequently associated with cancer and as insufficient Akt signaling is linked to metabolic disease and diabetes mellitus. Using a genome-wide RNAi screen in Drosophila cells in culture, and in vivo analyses in the third instar wing imaginal disc, we studied the regulatory circuitries that define dAkt activation. We provide evidence that negative feedback regulation of dAkt occurs during normal Drosophila development in vivo. Whereas in cell culture dAkt is regulated by S6 Kinase (S6K)–dependent negative feedback, this feedback inhibition only plays a minor role in vivo. In contrast, dAkt activation under wild-type conditions is defined by feedback inhibition that depends on TOR Complex 1 (TORC1), but is S6K–independent. This feedback inhibition is switched from TORC1 to S6K only in the context of enhanced TORC1 activity, as triggered by mutations in tsc2. These results illustrate how the Akt–TOR pathway dynamically adapts the routing of negative feedback in response to the activity load of its signaling circuit in vivo

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation?

    Get PDF
    Stress granules (SGs) are membraneless cell compartments formed in response to different stress stimuli, wherein translation factors, mRNAs, RNA-binding proteins (RBPs) and other proteins coalesce together. SGs assembly is crucial for cell survival, since SGs are implicated in the regulation of translation, mRNA storage and stabilization and cell signalling, during stress. One defining feature of SGs is their dynamism, as they are quickly assembled upon stress and then rapidly dispersed after the stress source is no longer present. Recently, SGs dynamics, their components and their functions have begun to be studied in the context of human diseases. Interestingly, the regulated protein self-assembly that mediates SG formation contrasts with the pathological protein aggregation that is a feature of several neurodegenerative diseases. In particular, aberrant protein coalescence is a key feature of polyglutamine (PolyQ) diseases, a group of nine disorders that are caused by an abnormal expansion of PolyQ tract-bearing proteins, which increases the propensity of those proteins to aggregate. Available data concerning the abnormal properties of the mutant PolyQ disease-causing proteins and their involvement in stress response dysregulation strongly suggests an important role for SGs in the pathogenesis of PolyQ disorders. This review aims at discussing the evidence supporting the existence of a link between SGs functionality and PolyQ disorders, by focusing on the biology of SGs and on the way it can be altered in a PolyQ disease context.ALG-01-0145-FEDER-29480, SFRH/BD/133192/2017, SFRH/BD/133192/2017, SFRH/BD/148533/2019info:eu-repo/semantics/publishedVersio

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Biophysical regulation of hematopoietic stem cells

    No full text
    Blood is renewed throughout the entire life. The stem cells of the blood, called hematopoietic stem cells (HSCs), are responsible for maintaining a supply of all types of fresh blood cells. In contrast to other stem cells, the clinical application of these cells is well established and HSC transplantation is an established life-saving therapy for patients suffering from haematological disorders. Despite their efficient functionality throughout life in vivo, controlling HSC behaviour in vitro (including their proliferation and differentiation) is still a major task that has not been resolved with standard cell culture systems. Targeted HSC multiplication in vitro could be beneficial for many patients, because HSC supply is limited. The biology of these cells and their natural microenvironment – their niche – remain a matter of ongoing research. In recent years, evidence has come to light that HSCs are susceptible to physical stimuli. This makes the regulation of HSCs by engineering physical parameters a promising approach for the targeted manipulation of these cells for clinical applications. Nevertheless, the biophysical regulation of these cells is still poorly understood. This review sheds light on the role of biophysical parameters in HSC biology and outlines which knowledge on biophysical regulation identified in other cell types could be applied to HSCs

    Artificial niches: biomimetic materials for hematopoietic stem cell culture

    No full text
    Hematopoietic stem cells (HSCs) are indispensable for the treatment of patients with hematological disorders such as leukemia. However, the amount of available transplantable HSCs is limited. Therefore, new approaches to multiply HSCs in the laboratory are needed. Promising biomimetic technologies for HSC expansion are currently developed. This feature article gives an insight into the significance of this approach and introduces the essential building blocks (cells, matrix, and scaffolds) of biomimetic materials. Some recent strategies are highlighted and the challenges and possible applications of such materials are discussed

    The significance of integrin ligand nanopatterning on lipid raft clustering in hematopoietic stem cells

    No full text
    Hematopoietic stem cells (HSCs) are the vital, life-long source of all blood cell types. They are found in stem cell niches, specific anatomic locations that offer all the factors and signals necessary for the maintenance of the stem cell potential of HSCs. Much attention has been paid to the biochemical composition of the niches, but only little is known about the influence of physical parameters, such as ligand nanopatterns, on HSCs. To investigate the impact of nanometer-scale spacing between cell ligands on HSC adhesion, integrin distribution and signal transduction, we employed geometrically defined, nanostructured, bio-functionalized surfaces. HSCs proved to be sensitive to the lateral distance between the presented ligands with regard to adhesion and lipid raft clustering, the latter being a prerequisite for the formation of signaling complexes. Furthermore, an extensive redistribution of stem cell markers, integrins and phosphorylated proteins in HSCs was observed. In conclusion, integrin-mediated adhesion and signaling of HSCs proved to depend on the nanostructured presentation of ligands in their environment. In this work, we show that the nanostructure of the matrix is an important parameter influencing HSC behavior that should be integrated into biomaterial-based approaches aiming at HSC multiplication or differentiation

    Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells

    No full text
    Multiplication of hematopoietic stem cells (HSCs) in vitro with current standard methods is limited and mostly insufficient for clinical applications of these cells. They quickly lose their multipotency in culture because of the fast onset of differentiation. In contrast, HSCs efficiently self-renew in their natural microenvironment (their niche) in the bone marrow. Therefore, engineering artificial bone marrow analogs is a promising biomaterial-based approach for culturing these cells. In the current study, a straight-forward, easy-to-use method for the production of biofunctionalized, macroporous hydrogel scaffolds that mimic the spongy architecture of trabecular bones was developed. As surrogates for cellular components of the niche, mesenchymal stem cells (MSCs) from different sources (bone marrow and umbilical cord) and osteoblast-like cells were tested. MSCs from bone marrow had the strongest pro-proliferative effect on freshly isolated human hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood. Co-culture in the pores of the three-dimensional hydrogel scaffold showed that the positive effect of MSCs on preservation of HSPC stemness was more pronounced in 3D than in standard 2D cell culture systems. Thus, the presented biomimetic scaffolds revealed to meet the basic requirements for creating artificial HSC niches
    corecore