66 research outputs found

    Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>STEVOR proteins, encoded by the multicopy <it>stevor </it>gene family have no known biological functions. Their expression and unique locations in different parasite life cycle stages evoke multiple functionalities. Their abundance and hypervariability support a role in antigenic variation.</p> <p>Methods</p> <p>Immunoblotting of total parasite proteins with an anti-STEVOR antibody was used to identify variant antigens of this gene family and to follow changes in STEVOR expression in parasite populations panned on CSA or CD36 receptors. Immunofluorescence assays and immunoelectron microscopy were performed to study the subcellular localization of STEVOR proteins in different parasite stages. The capacity of the antibody to inhibit merozoite invasion of erythrocytes was assessed to determine whether STEVOR variants were involved in the invasion process.</p> <p>Results</p> <p>Antigenic variation of STEVORs at the protein level was observed in blood stage parasites. STEVOR variants were found to be present on the merozoite surface and in rhoptries. An insight into a participation in erythrocyte invasion was gained through an immunofluorescence analysis of a sequence of thin slides representing progressive steps in erythrocyte invasion. An interesting feature of the staining pattern was what appeared to be the release of STEVORs around the invading merozoites. Because the anti-STEVOR antibody did not inhibit invasion, the role of STEVORs in this process remains unknown.</p> <p>Conclusion</p> <p>The localization of STEVOR proteins to the merozoite surface and the rhoptries together with its prevalence as a released component in the invading merozoite suggest a role of these antigens in adhesion and/or immune evasion in the erythrocyte invasion process. These observations would also justify STEVORs for undergoing antigenic variation. Even though a role in erythrocyte invasion remains speculative, an association of members of the STEVOR protein family with invasion-related events has been shown.</p

    cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Get PDF
    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites

    The Plasmodium falciparum STEVOR Multigene Family Mediates Antigenic Variation of the Infected Erythrocyte

    Get PDF
    Modifications of the Plasmodium falciparum–infected red blood cell (iRBC) surface have been linked to parasite-associated pathology. Such modifications enable the parasite to establish long-lasting chronic infection by evading antibody mediate immune recognition and splenic clearance. With the exception of the well-demonstrated roles of var-encoded PfEMP1 in virulence and immune evasion, the biological significance of other variant surface antigens (rif and stevor) is largely unknown. While PfEMP1 and RIFIN have been located on the iRBC surface, recent studies have located STEVOR at the iRBC membrane where it may be exposed on the erythrocyte surface. To investigate the role of STEVOR in more detail, we have developed antibodies against two putative STEVOR proteins and used a combination of indirect immunofluorescence assays (IFA), live IFA, flow cytometry, as well as agglutination assays, which enable us to demonstrate that STEVOR is clonally variant at the surface of schizont stage parasites. Crucially, expression of different STEVOR on the surface of the iRBC changes the antigenic property of the parasite. Taken together, our data for the first time demonstrate that STEVOR plays a role in creating antigenic diversity of schizont stage parasites, thereby adding additional complexity to the immunogenic properties of the iRBC. Furthermore, it clearly demonstrates that to obtain a complete understanding of how parasite-induced pathology is linked to variation on the surface of the iRBC, focusing the interactions of multiple multigene families needs to be considered

    The Malaria Secretome: From Algorithms to Essential Function in Blood Stage Infection

    Get PDF
    The malaria agent Plasmodium falciparum is predicted to export a “secretome” of several hundred proteins to remodel the host erythrocyte. Prediction of protein export is based on the presence of an ER-type signal sequence and a downstream Host-Targeting (HT) motif (which is similar to, but distinct from, the closely related Plasmodium Export Element [PEXEL]). Previous attempts to determine the entire secretome, using either the HT-motif or the PEXEL, have yielded large sets of proteins, which have not been comprehensively tested. We present here an expanded secretome that is optimized for both P. falciparum signal sequences and the HT-motif. From the most conservative of these three secretome predictions, we identify 11 proteins that are preserved across human- and rodent-infecting Plasmodium species. The conservation of these proteins likely indicates that they perform important functions in the interaction with and remodeling of the host erythrocyte important for all Plasmodium parasites. Using the piggyBac transposition system, we validate their export and find a positive prediction rate of ∼70%. Even for proteins identified by all secretomes, the positive prediction rate is not likely to exceed ∼75%. Attempted deletions of the genes encoding the conserved exported proteins were not successful, but additional functional analyses revealed the first conserved secretome function. This gave new insight into mechanisms for the assembly of the parasite-induced tubovesicular network needed for import of nutrients into the infected erythrocyte. Thus, genomic screens combined with functional assays provide unexpected and fundamental insights into host remodeling by this major human pathogen

    Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates

    Get PDF
    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment

    The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. <it>Leishmania </it>development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female <it>Phlebotomus perniciosus </it>and compared the transcript expression profiles.</p> <p>Results</p> <p>A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (<it>PperPer1</it>), two chymotrypsin-like proteins (<it>PperChym1 </it>and <it>PperChym2</it>), a putative trypsin (<it>PperTryp3</it>) and four putative microvillar proteins (<it>PperMVP1</it>, <it>2</it>, <it>4 </it>and <it>5</it>). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (<it>PperTryp1 </it>and <it>PperTryp2</it>), a chymotrypsin (<it>PperChym3</it>) and a microvillar protein (<it>PperMVP3</it>). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in <it>Leishmania infantum</it>-infected and uninfected sand flies, which identified the <it>L. infantum</it>-induced down regulation of <it>PperTryp3 </it>at 24 hours post-blood meal.</p> <p>Conclusion</p> <p>This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of <it>P. perniciosus</it>, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that <it>L. infantum </it>infection can reduce the transcript abundance of trypsin <it>PperTryp3 </it>in the midgut of <it>P. perniciosus</it>.</p

    A Major Role for the Plasmodium falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology

    Get PDF
    The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications, silent information regulator 2 and heterochromatin protein 1 (PfHP1) in epigenetic control of variegated expression, factors involved in the recruitment and organization of subtelomeric heterochromatin remain unknown. Here, we describe the purification and characterization of PfSIP2, a member of the ApiAP2 family of putative transcription factors, as the unknown nuclear factor interacting specifically with cis-acting SPE2 motif arrays in subtelomeric domains. Interestingly, SPE2 is not bound by the full-length protein but rather by a 60kDa N-terminal domain, PfSIP2-N, which is released during schizogony. Our experimental re-definition of the SPE2/PfSIP2-N interaction highlights the strict requirement of both adjacent AP2 domains and a conserved bipartite SPE2 consensus motif for high-affinity binding. Genome-wide in silico mapping identified 777 putative binding sites, 94% of which cluster in heterochromatic domains upstream of subtelomeric var genes and in telomere-associated repeat elements. Immunofluorescence and chromatin immunoprecipitation (ChIP) assays revealed co-localization of PfSIP2-N with PfHP1 at chromosome ends. Genome-wide ChIP demonstrated the exclusive binding of PfSIP2-N to subtelomeric SPE2 landmarks in vivo but not to single chromosome-internal sites. Consistent with this specialized distribution pattern, PfSIP2-N over-expression has no effect on global gene transcription. Hence, contrary to the previously proposed role for this factor in gene activation, our results provide strong evidence for the first time for the involvement of an ApiAP2 factor in heterochromatin formation and genome integrity. These findings are highly relevant for our understanding of chromosome end biology and variegated expression in P. falciparum and other eukaryotes, and for the future analysis of the role of ApiAP2-DNA interactions in parasite biology
    • …
    corecore