17 research outputs found

    Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes

    No full text
    Determining how tropical tree populations subject to selective felling (logging) pressure may be conserved is a crucial issue for forest management and studying this issue requires a comprehensive understanding of the relationships between population demography and gene flow. We used a simulation model, SELVA, to study (1) the relative impact of demographic factors (juvenile mortality, felling regime) and genetic factors (selfing, number and location of fathers, mating success) on long-term genetic diversity; and (2) the impact of different felling regimes on population size versus genetic diversity. Impact was measured by means of model sensitivity analyses. Juvenile mortality had the highest impact on the number of alleles and genotypes, and on the genetic distance between the original and final populations. Selfing had the greatest impact on observed heterozygote frequency and fixation index. Other factors and interactions had only minor effects. Overall, felling had a greater impact on population size than on genetic diversity. Interestingly, populations under relatively low felling pressure even had a somewhat lower fixation index than undisturbed populations (no felling). We conclude that demographic processes such as juvenile mortality should be modelled thoroughly to obtain reliable long-term predictions of genetic diversity. Mortality in selfed and outcrossed progenies should be modelled explicitly by taking inbreeding depression into account. The modelling of selfing based on population rate appeared to be oversimplifying and should account for inter-tree variation. Forest management should pay particular attention to the regeneration capacities of felled species

    Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana

    No full text
    Studying fine-scale spatial genetic patterns across life stages is a powerful approach to identify ecological processes acting within tree populations. We investigated spatial genetic dynamics across five life stages in the insect-pollinated and vertebrate-dispersed tropical tree Prunus africana in Kakamega Forest, Kenya. Using six highly polymorphic microsatellite loci, we assessed genetic diversity and spatial genetic structure (SGS) from seed rain and seedlings, and different sapling stages to adult trees. We found significant SGS in all stages, potentially caused by limited seed dispersal and high recruitment rates in areas with high light availability. SGS decreased from seed and early seedling stages to older juvenile stages. Interestingly, SGS was stronger in adults than in late juveniles. The initial decrease in SGS was probably driven by both random and non-random thinning of offspring clusters during recruitment. Intergenerational variation in SGS could have been driven by variation in gene flow processes, overlapping generations in the adult stage or local selection. Our study shows that complex sequential processes during recruitment contribute to SGS of tree populations. © 2014 Macmillan Publishers Limited All rights reserved

    Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed Neotropical tree, on Barro Colorado Island, Panama

    Full text link
    Simarouba amara (Simaroubaceae) is a vertebrate-dispersed, insect-pollinated Neotropical tree found in lowland moist forest from upper Mesoamerica to the Amazon basin. We assessed the spatial genetic structure of S. amara within the 50-ha Forest Dynamics Plot on Barro Colorado Island in the Republic of Panama. A total of 300 individuals were genotyped using five microsatellite loci, representing 100 individuals with a dbhX10 cm, 100 individuals of 1–10cmdbh, and 100 individuals of o1 cm dbh. The 200 individuals in the two larger size classes were also genotyped with 155 AFLP loci. Spatial autocorrelation analysis using Moran’s Index detected significant genotypic association at the smallest distance classes for 1–10 cm dbh (0–20 m) and 410 cm dbh (0–40 m) size categories. Significant spatial autocorrelations were detected over larger scales (0–140 m) in o1 cm dbh individuals. The relatively weak genetic structure of S. amara, in comparison to other recent studies, may be explained by pollen and seed dispersal over the 50 ha plot, overlapping seed shadows, and post recruitment mortality.http://deepblue.lib.umich.edu/bitstream/2027.42/83301/1/Hardesty2005.pd

    Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales

    Full text link
    Several demographic factors can produce family structured patches within natural plant populations, particularly limited seed and pollen dispersal and small effective density. In this paper, we used computer simulations to examine how seed dispersal, density, and spatial distribution of adult trees and seedlings can explain the spatial genetic structure (SGS) of natural regeneration after a single reproductive event in a small population. We then illustrated the results of our simulations using genetic (isozymes and chloroplast microsatellites) and demographic experimental data from an Abies alba (silver fir) intensive study plot located in the Southern French Alps (Mont Ventoux). Simulations showed that the structuring effect of limited dispersal on seedling SGS can largely be counterbalanced by high effective density or a clumped spatial distribution of adult trees. In addition, the clumping of natural regeneration far from adult trees, which is common in temperate forest communities where gap dynamics are predominant, further decreases SGS intensity. Contrary to our simulation results, low adult tree density, aggregated spatial distribution of seedlings, and limited seed dispersal did not generate a significant SGS in our A. alba experimental plot. Although some level of long distance pollen and seed flow could explain this lack of SGS, our experimental data confirm the role of spatial aggregation (both in adult trees and in seedlings far from adult trees) in reducing SGS in natural populations. (Résumé d'auteur

    To self or not to self... A review of outcrossing and pollen-mediated gene flow in neotropical trees

    Get PDF
    Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N=11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.M Ward, C.W Dick, R Gribel and A.J Low
    corecore