133 research outputs found

    Spinor two-point functions in maximally symmetric spaces

    Get PDF
    The two-point function for spinors on maximally symmetric four-dimensional spaces is obtained in terms of intrinsic geometric objects. In the massless case, Weyl spinors in anti de Sitter space can not satisfy boundary conditions appropriate to the supersymmetric models. This is because these boundary conditions break chiral symmetry, which is proven by showing that the ldquoorder parameterrdquo ψˉψ\left\langle {\bar \psi \psi } \right\rangle for a massless Dirac spinor is nonzero. We also give a coordinate-independent formula for the bispinor S(x)Sˉ(x)S(x)\bar S(x') introduced by Breitenlohner and Freedman [1], and establish the precise connection between our results and those of Burges, Davis, Freedman and Gibbons [2]

    Duality and Non-linear Response for Quantum Hall Systems

    Get PDF
    We derive the implications of particle-vortex duality for the electromagnetic response of Quantum Hall systems beyond the linear-response regime. This provides a first theoretical explanation of the remarkable duality which has been observed in the nonlinear regime for the electromagnetic response of Quantum Hall systems.Comment: 7 pages, 1 figure, typeset in LaTe

    Global quantum Hall phase diagram from visibility diagrams

    Full text link
    We propose a construction of a global phase diagram for the quantum Hall effect. This global phase diagram is based on our previous constructions of visibility diagrams in the context of the Quantum Hall Effect. The topology of the phase diagram we obtain is in good agreement with experimental observations (when the spin effect can be neglected). This phase diagram does not show floating.Comment: LaTeX2e, 9 pages, 5 eps figure

    Skovbrugsberetning.

    Get PDF
    Skovbrugsberetning

    Noticer vedkommende Agerdyrkningsvæsenet og Landboforholdene i Territoriet Wiscounsin i Nord-Amerika.

    Get PDF
    Noticer vedkommende Agerdyrkningsvæsenet og Landboforholdene i Territoriet Wiscounsin i Nord-Amerika

    An RG potential for the quantum Hall effects

    Full text link
    The phenomenological analysis of fully spin-polarized quantum Hall systems, based on holomorphic modular symmetries of the renormalization group (RG) flow, is generalized to more complicated situations where the spin or other "flavors" of charge carriers are relevant, and where the symmetry is different. We make the simplest possible ansatz for a family of RG potentials that can interpolate between these symmetries. It is parametrized by a single number aa and we show that this suffices to account for almost all scaling data obtained to date. The potential is always symmetric under the main congruence group at level two, and when aa takes certain values this symmetry is enhanced to one of the maximal subgroups of the modular group. We compute the covariant RG β\beta-function, which is a holomorphic vector field derived from the potential, and compare the geometry of this gradient flow with available temperature driven scaling data. The value of aa is determined from experiment by finding the location of a quantum critical point, i.e., an unstable zero of the β\beta-function given by a saddle point of the RG potential. The data are consistent with aRa \in \mathbb{R}, which together with the symmetry leads to a generalized semi-circle law.Comment: 10 figures, sligthly updated discussion and refs, accepted for PR

    Derivation of the Semi-circle Law from the Law of Corresponding States

    Get PDF
    We show that, for the transition between any two quantum Hall states, the semi-circle law and the existence of a duality symmetry follow solely from the consistency of the law of corresponding states with the two-dimensional scaling flow. This puts these two effects on a sound theoretical footing, implying that both should hold exactly at zero temperature, independently of the details of the microscopic electron dynamics. This derivation also shows how the experimental evidence favours taking the two-dimensional flow seriously for the whole transition, and not just near the critical points.Comment: 4 pages, 1 figure, typeset in LaTeX (uses revtex

    Duality in the Quantum Hall Effect - the Role of Electron Spin

    Get PDF
    At low temperatures the phase diagram for the quantum Hall effect has a powerful symmetry arising from the Law of Corresponding States. This symmetry gives rise to an infinite order discrete group which is a generalisation of Kramers-Wannier duality for the two dimensional Ising model. The duality group, which is a subgroup of the modular group, is analysed and it is argued that there is a quantitative difference between a situation in which the spin splitting of electron energy levels is comparable to the cyclotron energy and one in which the spin splitting is much less than the cyclotron energy. In the former case the group of symmetries is larger than in the latter case. These duality symmetries are used to constrain the scaling functions of the theory and, under an assumption of complex meromorphicity, a unique functional form is obtained for the crossover of the conductivities between Hall states as a function of the external magnetic field. This analytic form is shown to give good agreement with experimental data. The analysis requires a consideration of the way in which longitudinal resistivities are extracted from the experimentally measured longitudinal resistances and a novel method is proposed for determining the correct normalisation for the former.Comment: 22 pages, 8 figures, typeset in LaTe
    corecore