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Abstract. The two-point function for spinors on maximally symmetric four- 
dimensional spaces is obtained in terms of intrinsic geometric objects, In the 
massless case, Weyl spinors in anti de Sitter space can not satisfy boundary 
conditions appropriate to the supersymmetric models. This is because these 
boundary conditions break chiral symmetry, which is proven by showing that 
the "order parameter" (~7~k) for a massless Dirac spinor is nonzero. We also give 
a coordinate-independent formula for the bispinor S(x)S(x') introduced by 
Breitenlohner and Freedman [1], and establish the precise connection between 
our results and those of Burges, Davis, Freedman and Gibbons [2]. 

1. Introduction 

Maximally symmetric spacetimes provide an interesting background for studying 
quantum field theory in curved space. They also have nice applications: de Sitter 
space (DS) appears in "inflationary" models of the early universe [3], and anti de 
Sitter space (ADS) as the classical ground state of gauged supergravity models [1]. 

In this paper we extend the coordinate independent construction of two-point 
functions for bosons [4] to the fermionic case. The method employs only geometric 
quantities intrinsic to the manifold, such as the propagator of parallel transport. By 
exploiting the maximal symmetry of the spacetime we therefore obtain very simple 
expressions. 

We use notation in which spinors i n (conjugate spinors ~-A) have undotted 
(dotted) capital latin indices. This notation is explained in [5], and restricts the 
applicability of this work to four dimensions. 

In Sect. two we introduce the parallel propagator for spinors and calculate its 
covariant derivative. Section three uses this result to find the massive two-point 
functions for DS and ADS. Section four treats the massless limits, and shows why 
chiral symmetry must be broken in ADS. In Sect. five we obtain a simple formula for 
the Killing bispinor S(x)S(x') introduced in [1, 2], and use it to establish the precise 
equivalence between our results and theirs. 

The conclusion--that chiral symmetry is broken by supersymmetric boundary 
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conditions in ADS-- i s  verified in Sect. four by showing that the order parameter 
(ff~O) of chiral symmetry breaking does not vanish for either choice of supersym- 
metric boundary conditions. This confirms that Weyl spinors satisfying those 
boundary conditions do not exist on ADS. 

2. The Spinor Parallel Propagator DAA'(x, x') 
In this paper the notation for two-component spinors and all signature and 
curvature conventions are those of Penrose and Rindter [5]. The only difference is 
that we use dotted and undotted spinor indices rather than primed and unprimed 
ones. In our paper a primed index indicates that it lives in the tangent space at x', 
unprimed indices live at x. 

The use of two-component spinors restricts us to four dimensions and signature 
- 2 .  We also adopt the bitensors n~(x, x'), n"'(x, x') and gaY(X, X') as geometrically 
defined by Allen and Jacobson [4] for maximally symmetric spaces. However our 
conventions: ( + ,  , , ) and 2V[aVb] V c= --RabcdVd are opposite those [4]. 
Nonetheless, all the formulae given in Table 1 of [4] remain correct, except that now 
R 2 > 0 for ADS and #2 > 0 for timelike separated points, and the scalar curvature is 
- 1 2 / R  2. [In the conventions of [4] R 2 >  0 for DS and #2 > 0  for spacelike 
separations. R denotes the radius of the space.] The formulae of that table are 
sufficient for our needs, and necessary to reproduce our calculations. 

Our fundamental object is the bispinor DAA'(X, X'). It parallel transports a two- 
spinor ~b A at the point x, along the shortest geodesic to the point x', yielding a new 
spinor Z a' at x', 

Z a" = ~Aoaa'(x,  x'). (2.1) 

Complex-conjugate spinors are similarly transported by the complex conjugate of 
DA a', which is/~A a'. The elementary properties of DA A' are given in the appendix. 

We need to find the covariant derivative OfDA A', which must be formed from the 
tangent to the geodesic naA = n~ and from DA a' itself (the proof parallels Appendix B 
of [4]): 

V AADB B'= O~(#)rlAADB B' + fl(#)rtBAD A B'. (2.2) 

Here #(x, x') is the geodesic separation ofx and x', nAa = V AA#, nA'A' = V A'A'#, and the 
functions ~(#) and fl(#) remain to be determined. 

Since DB B' by definition satisfies 

n~V, DB B" = 0, (2.3) 

and nA~n na = 1/26A B, it follows that fl(#) = - 2c@). To determine fl(#) we use the 
Ricci identity (integrability condition) for spinors, which is [5], 

2Vt.Vbl q5 c = [e ;I,OX ABD C -'~ eAB(I)A.BDC]~) D. (2.4) 

On a maximally symmetric space the Riemann tensor is 

Rabca = -~2 (gac gba -- g~agb~), (2.5) 
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and the curvature spinors [5] are 

1 
X ABCD = - -  "~(~ .ACBBD -{- BADBBC), 

Therefore DA A" must  satisfy 

4Vt, Vb]D cc" = _ _ 

~)ABCD ~- O. 

1-T(eaFeB c + ea%se)eABD Ec'. 

203 

(2.6a) 

(2.6b) 

(2.7) 

Inserting (2.2) for VaDB B" and contracting with eac ~ and eAcna'~, we find that  fl(/~) 
must satisfy respectively 

fl' + 3A(#)fl + f12 _ 2/R 2 = 0, (2.8a) 

fl' + A(#)fl - 1/R E = 0, (2.8b) 

where ' = d/d# and A(#) = R -  1 cot (Iz/R). (Note: A is given in Table 1 of [4]; it is 
defined by Vanb = A[g~b -- n~nb]). 

The unique solution to (2.8) which vanishes as (laiR) ~ 0 is fl = - (A + C), where 
C = - R -  1 csc(u/R). Therefore we find 

V AADB B" = (A + C)[½nn;tDB i v -  nBAD ff '] .  (2.9) 

This result implies (1.22) in [4], because the parallel propagator  for vector indices is 
O, b" = DAB'Bi B'. Equipped with (2.9), we can find the spinor 2-point functions. 

3. Massive Two-point Functions 

We denote a four-component Dirac spinor by 

L,~A / 
(3.1) 

where q~A and ~,i are a pair of two-component  spinors. The Dirac equations of 
motion are (ref. [5] Eq. 4.4.66) 

- - m  
VAA~ A = ~ ~ ,  (3.2a) 

• m 

Vaa]~i = ~ ~b a, (3.2b) 

where m is the mass. 
There are two basic two-point functions, which are 

pAB" = ( ~A(x)q~*)'(X, ) > =f(I,)DAA,nA'~ ', (3.3a) 

Qa ~" = ( 2a(x)~a'(x ') ) = 9(p)OA ~'. (3.3b) 

We assume temporarily that  x and x' are spacelike separated so that  the field 
operators in (3.3) anti-commute. The right-hand side of (3.3) is the most general 
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maximally symmetric bispinor with the correct index structure. [Any other 
expressions with the correct index structure can be reduced to it via the equations in 
the appendix.] The funct ionsfand g depend only upon the geodesic distance #. We 
will shortly see that other two-point functions like (~A;(n,) are entirely determined 
by f and g. 

The equations of motion (3.2) now imply that 

- / ' n  /}, 
VAA PA& = x//~ QA , (3,4a) 

VA,o a, m B, = - - P a  • (3.4b) A ~A X//~ 

Thus inserting (3.3a(b)) into (3.4a(b)), one obtains two coupled equations for the 
coefficient functions f(#)  and g(#), 

f '  + ~ A  - C ) f  ÷ x/f2mg = 0, (3.5a) 

m 
g' + ~(A + C)O -- ~ f  = 0. (3.5b) 

Combining these two equations, one obtains a single second-order equation for f ,  

f "  + 3 A f '  + [m 2 - 9 R - Z  + 3C(A - C ) ] f -  0, (3.6) 

where we have used A' = - C 2, C' = - A C  and C 2 - A z = R -2. 
Before finding f ,  let us return to the other possible two-point functions. The 

expectation value of (~,~7> may be written in terms of 2-component spinors as 

From the definitions (3.3) and equations of motions (3.2) and (3,5) it follows that the 
remaining two combinations are 

< ~bAxs, > = - 21/2 m-  1VB,a, pA~, = g(lz)DAn,, (3.8a) 

~V t3 ~" <Z,i;(w> = -- 2t12m- B'~'~A = --f(#)Dawn,4A • (3.8b) 

Thus in terms of 2-component bispinors 

o D,4 n" -- f D aa" rt A,& l <OY>=LY A / (3.9) 

Now we solve for f(/~) and g(/~). 
Changing variables to Z = cos 2 (#/2R), and letting 

w(Z) = [R2(Z - 1)] - 1/2f(Z), (3.10) 

one obtains a hypergeometric equations for w, 

Z(1 - Z)ff + [c - (a + b + 1)Z] ff - abw = 0, (3.11) 

where-= d/dZ. (Note: the factor R 2 is included in the definition of w (3. I0) to ensure 
that the standard branch cut of the square root lies along timelike separations 
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~ 2  > 0).  The parameters a, b and c are 

a = 2 + ~ ,  b = 2 - ~ ,  c = 2 .  (3.12) 

(Note: for R real it is important that a > b.) In the same way one may show that 
Z -  1/2 9 satisfies a hypergeometric equation with parameters a, b, and c + 1. We now 
need to specify boundary conditions to uniquely specify a solution to this equation. 

The correct solution to (3.11) in de Sitter space R z < 0  is obtained [4] by 
demanding that it is only singular when/~ = 0 and not when # = rcR. 
This yields 

fDS = Nns( 1 -- Z ) I / Z F (  a, b; c; Z ) ,  

gDS = - -  iNns 2- 3/2m1RI z 1 / Z F ( a ,  b; c + t; Z). (3.13) 

The short distance behavior #--. 0 can now be used to fix the constant NDS. In flat 
space f ~ -- i2- 1/2 ~-  2 ( _ #2) - 3/2 for small #, thus 

- i F ( a ) F ( b )  - i l R m l ( 1  - m2R 2) 

S o s -  8x//~rc2[Ri3 = 8x/~lrlRi3 sinhTrlRml. (3.14) 

The Feynman function is obtained by evaluating fDs(Z) and 9Ds(Z) above the 
branch cut from Z = 1 to o% i.e. takingfDs(Z + i0) and ,qDs(Z + i0). This concludes 
the de Sitter case. 

In anti de Sitter space, it is necessary to impose boundary conditions at timelike 
spatial infinity, to (1) make the Cauchy problem well defined, and (2) conserve 
quantities (like the inner product between modes) formally conserved (via in- 
tegration by parts) [4]. This leads to "reflecting" boundary conditions at spatial 
infinity, which for example reflect any flux of energy-momentum from the boundary 
at spatial infinity, and thus conserve the Hamiltonian. In supersymmetry these same 
boundary conditions also arise [1, 2]. 

There are two possible reflecting boundary conditions for a field of mass m. 
When m is nonzero, these correspond to the two representations D(3/2 + ]mR l, t/2) 
and D(3/2 -ImRI,  1/2) of S0(3, 2). In the limit m---, 0 +, the two representations both 
become D(3/2, 1/2), but there are still two dif ferent  two-point functions, because 
there are two phys i ca l l y  inequivalent  sets of modes that can from a representation of 
D(3/2, 1/2). These modes differ only by a parity assignment. Following [2] (p. 270) 
one set of modes is labeled D(3/2, 1/2) + and the other set of modes is labeled 
D(3/2, 1/2)-. The "minus" nodes are obtained from the "plus" modes by a chiral 
transformation whose effect is to change the sign of q~a, while leaving XA unchanged. 
The correlation functions of the modes in these two sets can be obtained as the limit 
m--*0 + of the two distinct massive representations given above. 

In the representation D(3/2 + IrnRl, 1/2), which we label by " + " ,  the modes, and 
the two-point function, fall off as fast as possible at spatial infinity Z--, co. (This turns 
out to imply that f and 9 are singular at both Z = 0 and Z = 1.) Since a > b, we 
therefore obtain 

f ~ D s  = N,~ns(Z  - 1) 1/2Z-"F(a, a - c + 1; a -- b + 1; Z -  1), 

9~,Ds = imN~,Ds2-1/2Z1/2 -aF(a ,  a - c; a - b + 1; Z -  1), (3.15) 
r n  I I 
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and the constant is 

- i r ( a ) r ( a  - 1 )  

U~os = 8x//~l~21Ri3 F(a  - b + 1)" (3.16) 

The reason that the factor m/Iml has appeared in the formula for O +, is that changing 
the sign of m (see (3.2)) is equivalent to changing the sign of spinor ~bA, and this has 
the effect of changing the sign of (3.3b), and hence of 9(#). In the limit m ~ 0+ , f  + and 
g + give the two-point function of the modes in D(3/2, 1/2) +. In general, the Feynman 
function is obtained by evaluating f f ,  DS and g~os just above the branch cut from 
Z = 0  to 1, i.e. taking fADs(Z+iO).  We will return to the representation 
0 ( 3 / 2 -  ImRI, 1/2) later. 

4. Massless Two-point Functions and Chiral Symmetry Breaking 

On de Sitter space the massless four-component spinor correlation functions are 
given by (3.13) 

- i  
fDS = 8v/~rr2[R[ 3 (1 -- Z) -a/2, (4.1a) 

gos = O. 
(4.1b) 

The function fDs, and thus (~bA~ a ') ,  is singular in the coincidence limit (#---, 0 or 
Z ~ t) as in fiat space. Because the function gDS, and thus (~a~b a' ) ,  is identically zero, 
there is no correlation between the right- and left-handed components q~ and X. Thus 
the massless four-component Dirac spinor on de Sitter space is equivalent to two 
decoupled massless two-component Weyl spinors. 

This result is not true on anti de Sitter space because the boundary conditions are 
different there. From (3.15), when m ~ 0 +, the two-point function for the modes in 
9(3/2, 1/2) + becomes 

- i  
f +ADS = 8 v/27r 2 IRI 3 (Z - 1)- 3/2, (4.2a) 

1 Z -  3/2 (4.2b) 
g+ADS = 167r21Ri3 

As in the de Sitter case (q~a~bA') is singular in the concidence limit. Unlike the de 
Sitter case, the function g + is nonzero, and is singular in the limit Z --, 0, when x and 
x' are antipodal points. Hence the right and left components of the four-component 
massless spinor are not uncorrelated on anti de Sitter space. Thus we conclude that 
there exist no Weyl spinors that satisfy appropriates ADS boundary conditions 
because the existence of such spinors would force g÷(Z) to vanish. 

Breitenlohner and Freedman l l ]  have observed that supersymmetric boundary 
conditions on ADS break the chiral U(1) invariance of the linearized spin-0/spin-1/2 
sector of gauged N = 4 supergravity. Weyl spinors are therefore absent because 
supersymmetric boundary conditions break chiral symmetry. In a similar vein, 
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Fronsdal [8] has pointed out that right- and left-handed neutrinos in ADS are 
distinguished by a superselection rule. 

We have already discussed the representation D(3/2 + ImRJ, 1/2) for a field of 
mass m. The other possible representation for a field of mass m is D(3/2 - l raRh 1/2). 
In this representaion we call the two-point function f - ,  9-- It is 

f - A D S  = N - A D S (  Z - -  1 ) I / 2 Z - b F (  b, b - c + 1, b - a + 1, Z -  1), 

9-ADS = -- i2-1/2,~N-ADsZ1/2-bF(b, b - c, b - a + 1, Z -  1), 
Iml 

with 

(4.3) 

- i F ( b ) V ( b  - 1) 
N - A D  S = - -  r..- (4.4) 

8 ~ / 2 n 2 [ g 1 3  F ( b  - a + 1)" 

Thus in the massless limit m = 0 +, this yields 

- i  
f-ADS = 8 / ~  ~z2IRI3 ( Z  - 1) - 3 / 2 ,  (4.5a) 

- 1  _ 7 -  3/2 (4.5b) 
g-ADS 1 6 r c 2 ] R i 3 ~  , 

which is identical to (4.2) except for the sign of 0. Thus chiral symmetry is broken for 
both the 0(3/2, 1/2) + modes and the 0(3/2, 1/2)- modes. 

There is a simple way to understand the change of sign between 
9 + and 9-  when m = 0. As discussed earlier, the modes in D(3/2, 1/2) + are obtained 
from those in D(3/2, 1/2)- by a chiral transformation (ref. [1] pg. 270), whose effect is 
to change the sign of 4L, while leaving Xa unaffected. Hence the expectation value 
(¢A~ ~' ) (and thus f )  is unchanged, but the expectation value (¢AX B" ) (and thus g) 
changes sign. 

As a final check of our conclusions, we calculate the order parameter ( i f 0 )  = 
trace (Off) .  This quantity is not invariant under chiral transformations 
O ~ ei '7sO, and thus serves as an index of chiral symmetry breaking. By the trace of 
( t ~ )  we mean 

(tffO) = lim trace (0(x)ff(x')) 
X'--~X 

= lim [ ( ~ A Z B ' ) D B . A +  (~(AC~B')B~,A-I = lim 4g(#), (4.6) 

and in the coincidence limit Z ~ t one obtains from (4.2b) and (4.5b) respectively, 

( f rO) = 4g-+ADS( Z = 1) = _ (4n2) -11R1-3 (4.7) 

for the modes in D(3/2, 1/2) -+. We stress that this method of calculation requires no 

regularization of any kind. 
We can also calculate ( tff0)  using dimensional regularization, by taking the 

coincidence limit, and tracing for n # 4 and then analytically continuing to n = 4. 
Following Appendix B of [2] we obtain, for the modes in D(3/2 + m R ,  I/2)-+, 
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( ~ )  = +_(27r)-"/2tRl-3(mR + ~ 2  2 ) I  ~ ( 1 - n / 2 ) F ( m R  + n / 2 - 1 )  ~ - - - ~  ~- - - ~  (4.8) 

In the massless limit m = 0, where we might except chiral symmetry to be restored, 
we obtain the same result (4.7) as above. This confirms our conclusion. 

5. The Bispinor S(x)•(x'), and the Representations/9(3/2 _ ImRI, 1/2) 

In this section we establish the precise connection between the spinor two-point 
functions of [2] and the two-point functions in this paper. To do this, we need to 
express the (4-component) bispinor S(x)'S(x') defined in I-1] in terms of geometrical 
objects. Reference t-2] notes that if G(x, x') satisfies the scalar wave equation for mass 
M2sealar = ra 2 -- m/R -- 2/R 2, then 

{ [i~3 x + m + l /R]  G(x, x') } S(x) S(x') (5.1) 

satisfies the Dirac equation for mass m. We will use this fact to find S(x)S(x'). 
First note that if m = 0 orm = l /R,  then the scalar mass takes the conformally 

invariant value ?tiE,carat = - 2/R 2. Secondly, if G(x, x') has only one singular point as 
Z ~ 1, then (5.1) also has only one singular point (the converse is also true). Thus 
choosing G(x, x') to be the conformally invariant scalar two-point function with only 
one singular point ((2.9) [4]) 

1 
G = ~ ( Z  - 1)- ' ,  (5.2) 

we know from (5.1) that 

( ~ l ~ ) m  = 1/R = { (i~ + 2/R)G}Sx)S(x'), (5.3a) 

( ~ ) , ,  = o = ((i(~ + 1/R)G)S(x)S(x'), (5.3b) 

where (Off )  are correlation functions with only one singular point on ADS. Thus 
subtracting (5.3b) from (5.3a) we find 

S(x)S(x') = R G -  ~ [ ( ~ f f  ),,,= 1/R -- ( ~ f f ) ~  = 0]. (5.4) 

Defining d f = f m =  1/R-f , ,=0 and Ag similarly, and using (3.13), one obtains 

i 
A f =  8 V/2rc2R a (Z - 1)- 1/2, (5.5a) 

1 
d .q = Z1/2~Z - 1)- ~. (5.5b) 

16rc2R 3 

Thus from (3.9) and (5.4) we find 

[ S(x) g(x') = (5.6) Liv/~(z - 1)l/2Dca'nCa] - Z 7 7 ~  J" 

In the limit as x ~ x' (or Z ~ 1) this reduces to the identity operator, as expected. 
Having obtained an expression for S(x)S(x') we can now compare our two-point 
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functions to those of [2]. Take for ?-matrices [6], 

. 0 

(?")~a = - ' ~ / Z k ~  ----0---J" (5.7) 

In this basis, the Dirac equation [i~9-m]~k=0 with ~k given by (3.1) implies the 
equations of motion (3.2) for ~ba and ~-A. Now if G(#) is any function of geodesic 
distance, then 

0 na~G'(/x) 
i":G(#)= i?'nP G'(lO= x//2[nSAG'(#) ~ 1" (5.8) 

Thus combining (5.1) with (5.6) and (5.8), one obtains for (~bff) the expression given 
in (3.9), with 

~ ( Z -  [ (1 (5.9a) f =  1) 1/2 Zd~+ -mR)]G(Z), 

Z~/ZF L 1)d-~ + (1 mR)JG(Z), (5.9b) e = - + 

where we have used dZ/dl.t = iR-I(Z 2-  Z) 1/2. 
Now we can compare our two-point functions with those of [2]. In that 

reference, we first take the scalar field A in ([2], 7.10) to have a mass parameter 2 = 
1 +lmR l- Then the two-point function for A is 

. . . . .  2 r(2)r(2- I),~ G(Z)=['~nrO F - - ~ - ~ )  [ z -  1)-aF(2,2 - 1; 22 - 2; ( 1 -  Z)-1). (5.10) 

[Note: in the notation of [2] u = 2(1 - Z). ] From (5.9) and (5.10) we can easily see [7] 
that this G(Z) of Burges et al. [2] gives our ff ,  DS and # +ADs of (3.15). Thus f +, # ÷ and 
the representation D(3/2 + I mRI, 1/2) corresponds to choosing the regular repre- 
sentation of A for I rnRI > 1/2 and the irregular representation of A for tmRl < 1/2. In 
the massless limit ~p belongs to D(3/2, 1/2) +. 

Similarly, if we take the scalar field A to have a mass parameter 2=2-ImRl ,  this 
gives the two-point function f - ,  g-  (4.3) and 0 lies in D(3/2- [mR [, 1/2). Thus, f - ,  g-  
corresponds to choosing the (nonunitary) irregular representation of A for 
I mRI > 1/2 and the regular representation of A for I mR[ < 1/2. In the massless limit 
belongs to D(3/2, 1/2)-. 

We have also confirmed formula (7.10) of reference [2] by carrying out a brute- 
force sum of the spinor mode functions. Since that lengthy calculation simply 
confirms the results given there, we have not included it here; details are available 
from the authors. We have also recently learned that further remarks by Freedman 
on the boundary conditions in anti de Sitter space may be found in [9]. 

Appendix. Properties of the Parallel Propagator D,ff 
DAA'(x,x')=--DA'A(X~,X ) or D A A ' = - - D A ' A ,  

DAA" DA, B = EA B, 

D AA, D AA" = 2, 

(A1) 

(A2) 

(A3) 
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(tim DA B" ) = 8 A B , (A4) 

(lim DaB. ) =eAB, 
X---~ X t 

ga b' = DAB" D A B" ' 

DAB'~A & nAA = -- n B'&, 

nA~DA~, = -- nlvt). DB'~, 

V AADAA • = (3/2)(A + C)nAADAA., 

DAA ' V AA n a'A" = -- 3 COAa',  

V AADB lr = (A + C)[½nAADI~ 1v -- nBAD AB'], 

V aAtlAl~ .= ~ AeAB. 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(AIO) 

( A l l )  

(A12) 
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