348 research outputs found

    Enclosing a moving target with an optimally rotated and scaled multiagent pattern

    Get PDF
    We propose a novel control method to enclose a moving target in a two-dimensional setting with a team of agents forming a prescribed geometric pattern. The approach optimises a measure of the overall agent motion costs, via the minimisation of a suitably defined cost function encapsulating the pattern rotation and scaling. We propose two control laws which use global information and make the agents exponentially converge to the prescribed formation with an optimal scale that remains constant, while the team's centroid tracks the target. One control law results in a multiagent pattern that keeps a constant orientation in the workspace; for the other, the pattern rotates with constant speed. These behaviours, whose optimality and steadiness are very relevant for the task addressed, occur independently from the target's velocity. Moreover, the methodology does not require distance measurements, common coordinate references, or communications. We also present formal guarantees of collision avoidance for the proposed approach. Illustrative simulation examples are provided

    Molecular gas and star formation toward the IR dust bubble S 24 and its environs

    Get PDF
    Aims. We present a multiwavelength analysis of the infrared dust bubble S 24 and the extended IR sources G341.220-0.213 and G341.217-0.237 located in its environs. We aim to investigate the characteristics of the molecular gas and the interstellar dust linked to them and analyze the evolutionary state of the young stellar objects identified there and the relation of the bubble to S 24 and the IR sources. Methods. Using the APEX telescope, we mapped the molecular emission in the CO(2-1), 13CO(2-1), C18O(2-1), and 13CO(3-2) lines in a region of about 5′ × 5′ in size around the bubble. The cold dust distribution was analyzed using submillimeter continuum images from ATLASGAL and Herschel. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium in the region. Results. The molecular gas distribution shows that gas linked to the S 24 bubble and to G341.220-0.213 and G341.217-0.237 has velocities of between -48.0 km s-1 and -40.0 km s-1, compatible with the kinematical distance of 3.7 kpc that is generally adopted for the region. The gas distribution reveals a shell-like molecular structure of ∼0.8 pc in radius bordering the S 24 bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel-SPIRE images. The weak extended emission at 24 μm from warm dust and radio continuum emission projected inside the bubble indicates exciting sources and that the bubble is a compact Hii region. Part of the molecular gas bordering the S 24 Hii region coincides with the extended infrared dust cloud SDC341.194-0.221. A molecular and cold dust clump is present at the interface between the S 24 Hii region and G341.217-0.237, shaping the eastern border of the IR bubble. The arc-like molecular structure encircling the northern and eastern sections of the IR source G341.220-0.213 indicates that the source is interacting with the molecular gas. The analysis of the available IR point source catalogs reveals some young stellar object candidates linked to the IR-extended sources, thus confirming their nature as active star-forming regions. Gas and dust masses were estimated for the different features. The total gas mass in the region and the H2 ambient density amount to 10 300 M⊙ and 5900 cm-3, indicating that G341.220-0.213, G341.217-0.237, and the S 24 Hii region are evolving in a high-densit © ESO, 2015.Facultad de Ciencias Astronómicas y Geofísica

    Deciphering the Role and Signaling Pathways of PKCα in Luminal A Breast Cancer Cells.

    Get PDF
    Protein kinase C (PKC) comprises a family of highly related serine/threonine protein kinases involved in multiple signaling pathways, which control cell proliferation, survival, and differentiation. The role of PKCα in cancer has been studied for many years. However, it has been impossible to establish whether PKCα acts as an oncogene or a tumor suppressor. Here, we analyzed the importance of PKCα in cellular processes such as proliferation, migration, or apoptosis by inhibiting its gene expression in a luminal A breast cancer cell line (MCF-7). Differential expression analysis and phospho-kinase arrays of PKCα-KD vs. PKCα-WT MCF-7 cells identified an essential set of proteins and oncogenic kinases of the JAK/STAT and PI3K/AKT pathways that were down-regulated, whereas IGF1R, ERK1/2, and p53 were up-regulated. In addition, unexpected genes related to the interferon pathway appeared down-regulated, while PLC, ERBB4, or PDGFA displayed up-regulated. The integration of this information clearly showed us the usefulness of inhibiting a multifunctional kinase-like PKCα in the first step to control the tumor phenotype. Then allowing us to design a possible selection of specific inhibitors for the unexpected up-regulated pathways to further provide a second step of treatment to inhibit the proliferation and migration of MCF-7 cells. The results of this study suggest that PKCα plays an oncogenic role in this type of breast cancer model. In addition, it reveals the signaling mode of PKCα at both gene expression and kinase activation. In this way, a wide range of proteins can implement a new strategy to fine-tune the control of crucial functions in these cells and pave the way for designing targeted cancer therapies.Work in Murcia was supported by grants BFU2017-87222-P (MICINN, Spain-FEDER) to S.C.-G. and J.C.G.-F. and Fundación Séneca Region de Murcia 20885/PI/18 to S.C.-G.S

    Proxima Centauri b is not a transiting exoplanet

    Full text link
    We report Spitzer Space Telescope observations during predicted transits of the exoplanet Proxima Centauri b. As the nearest terrestrial habitable-zone planet we will ever discover, any potential transit of Proxima b would place strong constraints on its radius, bulk density, and atmosphere. Subsequent transmission spectroscopy and secondary-eclipse measurements could then probe the atmospheric chemistry, physical processes, and orbit, including a search for biosignatures. However, our photometric results rule out planetary transits at the 200~ppm level at 4.5 μm~{\mu}m, yielding a 3σ\sigma upper radius limit of 0.4~R_\rm{\oplus} (Earth radii). Previous claims of possible transits from optical ground- and space-based photometry were likely correlated noise in the data from Proxima Centauri's frequent flaring. Follow-up observations should focus on planetary radio emission, phase curves, and direct imaging. Our study indicates dramatically reduced stellar activity at near-to-mid infrared wavelengths, compared to the optical. Proxima b is an ideal target for space-based infrared telescopes, if their instruments can be configured to handle Proxima's brightness.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in MNRA

    Millimeter and far-IR study of the IRDC SDC341.232-0.268

    Get PDF
    We analyze the molecular gas and dust associated with the infrared dark cloud SDC341.232-0.268 in order to investigate the characteristics and parameters of the gas, determine the evolutionary status of four embedded EGO candidates, and es- tablish possible infall or outflow gas motions. We base our study on 12CO(2-1), 13CO(2-1), and C18O(2-1) data obtained with the APEX telescope, molecular data of high density tracers from the MALT90 survey and IR images from Spitzer, Herschel and ATLASGAL. The study reveals two clumps at −44 km s−1 towards the IRDC, with densities of > 104cm−3, typical of IRDCs, while high density tracers show H2 densities > 105. FIR images reveals the presence of cold dust linked to the molecular clumps and EGOs. A comparison of the spectra of the optically thin and optically thick molecular lines towards the EGOs suggests the existence of infall and outflow motions.Analizamos el gas molecular y el polvo asociado a la nube oscura infrarroja SDC341.232-0.268 con el fin de investigar las características y parámetros físicos del gas, determinar el estado evolutivo de los cuatro EGOs embebidos y establecer posibles movimientos de acreción o flujo molecular. Nos basamos en datos de 12CO(2-1), 13CO(2-1) y C18O(2-1) obtenidos con el telescopio APEX, trazadores de alta densidad extraídos de MALT90, e imágenes infrarrojas de Spitzer, Herschel y ATLASGAL. El estudio revela dos grumos moleculares a −44 km s−1 coincidentes con la IRDC con una densidad > 104cm−3, típica de IRDCs. Los trazadores de alta densidad arrojan densidades de H2 > 105. Las imágenes en el lejano IR muestran polvo frío asociado a los grumos moleculares y a los EGOs. La comparación de espectros moleculares ópticamente gruesos y finos sugiere la existencia de acreción y flujos moleculares.Facultad de Ciencias Astronómicas y Geofísica

    870 μm continuum observations of the bubble-shaped nebula Gum 31

    Get PDF
    Aims. We present here a study of the cold dust in the close environs of the ring nebula Gum 31. We aim at deriving the physical properties of the molecular gas and dust associated with the nebula, and investigating its correlation with the star formation in the region, which was probably triggered by the expansion of the ionization front against its environment. Methods. We make use of 870 μm emission data obtained with the Large APEX Bolometer Camera (LABOCA) to map the dust emission. The 870 μm emission provides an excellent probe of mass and density of dense molecular clouds. The obtained LABOCA image was compared to archival infrared, radio continuum, and optical images. Results. The 870 μm emission follows the 8 μm (Spitzer), 250 μm, and 500 μm (Herschel) emission distributions showing the classical morphology of a two-dimensional projection of a spherical shell. We use the 870 μm and 250 μm images to identify 60 dust clumps in the collected layers of molecular gas using the Gaussclumps algorithm. The clumps have effective deconvolved radii between 0.16 pc and 1.35 pc, masses between 70 M⊙ and 2800 M⊙, and volume densities between 1.1 × 103 cm-3 and ~2.04 × 105 cm-3. The total mass of the clumps is ~37 600 M⊙. The dust temperature of the clumps is in the range from 21 K to 32 K, while inside the Hii region it reaches ~40 K. The clump mass distribution for the sample is fitted by a power law dN/dlog (M/M⊙) ∝ M-α, with α = 0.93 ± 0.28. The slope differs from those obtained for the stellar IMF in the solar neighborhood, suggesting that the clumps are not direct progenitors of single stars/protostars. The mass-radius relationship for the 41 clumps detected in the 870 μm emission shows that only 37% of them lie in or above the high-mass star formation threshold. Most of this 37% have candidate YSOs projected inside their limits. A comparison of the dynamical age of the Hii region with the fragmentation time, allowed us to conclude that the collect-and-collapse mechanism may be important for the star formation at the edge of Gum 31, although other processes may be acting simultaneously. The position of the identified young stellar objects in the region is also a strong indicator that the collect-and-collapse process is acting.Facultad de Ciencias Astronómicas y GeofísicasInstituto Argentino de Radioastronomí

    A submillimeter study of the ir dust bubble S 21 and its environs

    Get PDF
    Basados en la emisión molecular en las líneas 12CO(2-1) y 13CO(2-1), y en la emisión en el continuo en el mediano y lejano infrarrojo hacia la burbuja S 21, analizamos las características físicas del gas y polvo asociado con S 21 y la presencia de objetos estelares jóvenes (YSOs) en su entorno. La emisión molecular revela una cáscara grumosa de 1.4 pc de radio rodeando a S 21. Su masa molecular es de 2900 M⊙ y la densidad ambiental original en la región, 2.1×103 cm−3, lo que indica que la burbuja evoluciona en un medio de alta densidad. La imagen a 24 μm muestra polvo tibio dentro de la burbuja, mientras que la emisión en el rango 250 a 870 μm revela que hay polvo frío en la vecindad, coincidente con el gas molecular. La detección de emisión en el continuo de radio indica que S 21 es una región Hii compacta. Una búsqueda de YSOs utilizando criterios fotométricos permitió identificar muchos candidatos coincidentes con los grumos moleculares. Se analiza si el proceso de collect and collapse ha dado origen a una nueva generación de estrellas.Based on the molecular emission in the 12CO(2-1) and 13CO(2-1) lines, and on the continuum emission in the MIR and FIR towards the S 21 IR dust bubble, we analyze the physical characteristics of the gas and dust linked to the nebula and the presence of young stellar objects (YSOs) in its environs. The line emission reveals a clumpy molecular shell, 1.4 pc in radius, encircling S 21. The total molecular mass in the shell amounts to 2900 M⊙ and the original ambient density, 2.1×103 cm−3, indicating that the bubble is evolving in a high density interstellar medium. The image at 24 μm shows warm dust inside the bubble, while the emission in the range 250 to 870 μm reveals cold dust in its outskirts, coincident with the molecular gas. The detection of radio continuum emission indicates that the bubble is a compact Hii region. A search for YSOs using photometric criteria allowed to identify many candidates projected onto the molecular clumps. We analize if the collect and collapse process has triggered a new generation of stars.Facultad de Ciencias Astronómicas y Geofísica
    corecore