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ABSTRACT
We propose a novel control method to enclose a moving target in a two-dimensional setting
with a team of agents forming a prescribed geometric pattern. The approach optimises a mea-
sure of the overall agent motion costs, via the minimisation of a suitably defined cost function
encapsulating the pattern rotation and scaling. We propose two control laws which use global
information and make the agents exponentially converge to the prescribed formation with an
optimal scale that remains constant, while the team’s centroid tracks the target. One control
law results in a multiagent pattern that keeps a constant orientation in the workspace; for the
other, the pattern rotates with constant speed. These behaviors, whose optimality and steadi-
ness are very relevant for the task addressed, occur independently from the target’s velocity.
Moreover, the methodology does not require distance measurements, common coordinate ref-
erences, or communications. We also present formal guarantees of collision avoidance for the
proposed approach. Illustrative simulation examples are provided.
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1. Introduction

This paper addresses the problem of enclosing a moving physical entity using multiple mo-
bile agents, which allows to acquire and maintain rich perception of this target or to es-
cort it. There has been notable recent research interest in achieving target-tracking behav-
iors with multirobot systems (Hausman, Müller, Hariharan, Ayanian, and Sukhatme (2015);
Khan, Rinner, and Cavallaro (2017); Robin and Lacroix (2016)), due to the important appli-
cations they enable in the context of, e.g., autonomous monitoring or surveillance tasks. Next,
we highlight the novel aspects of our proposed approach and situate it in the context of the
relevant related work in this area.

This work was supported by the French Government via programs FUI (project Aerostrip) and Investissements d’Avenir
(I-SITE project CAP 20-25 - MaRoC), and by the Spanish Government/European Union through project DPI2015-69376-R.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/304718868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2019.1605203&domain=pdf


1.1. Statement of contribution

We propose two control laws to enclose a moving target with a team of single-integrator
kinematic agents in two-dimensional space. For both laws, the agents achieve exponential
convergence to a formation pattern with optimal orientation and scale. More precisely, these
parameters are optimal in the sense that they minimise at any time the sum of squared dis-
tances that have to be traveled to reach the desired formation pattern. A key aspect of our
contribution is that this optimality is obtained without needing common reference frames,
communications, or distance measurements. Our analysis shows that –under arbitrary target
motions– one control law leads to a stable formation pattern, while the other results in the
pattern gyrating at constant speed. We also provide guarantees on the avoidance of collisions.
Under the two proposed control laws, the scale of the pattern remains constant and the cen-
troid of the group tracks the target’s position.

These behaviors are very interesting in various respects, discussed next. As the scale and
orientation of the pattern are optimal, the enclosing of the target is achieved efficiently. The
steadiness of the behavior in terms of the relative geometry of the elements (constant or uni-
formly varying pattern orientation, and constant scale) ensures that stable sensing and com-
munications will be maintained among agents. Due to this uniform behavior, our system may
be thought of as a mobile implementation of the sensing cage used in optical motion cap-
ture systems (Guerra-Filho (2005)), where the static relative geometry of the sensors allows
highly precise and occlusion-free reconstruction of all parts of a target. Another advantage
concerns safety and comfort, which are of singular importance, e.g., if the enclosed target is a
human. The human’s perceived comfort when navigating accompanied by robots is increased
when these robots exhibit uniform and predictable behaviors with small relative accelerations
(Kruse, Pandey, Alami, and Kirsch (2013)). Thanks to its steadiness and the decoupling of
the interagent motions from the movements of the human target, our method provides these
characteristics.

We choose to employ global information in our controller. In particular, every agent needs
to measure the relative position of all the other agents and of the target. Using global in-
formation for the problem we address is interesting because, by exploiting it in an optimal
manner, we obtain the key advantages in performance detailed in the paragraph above. More-
over, it is a reasonable choice given the conditions of the scenario we consider: tracking a
single target generally involves few agents (i.e., scalability is not an issue), and the controller
we present is decentralised. By this latter term we mean, as is common in the literature of
multiagent systems, that there is no central unit in the system (i.e., no single point of fail-
ure) and there is no need for communications between the entities that compute the controller
(i.e., the agents). This is the case for us because each agent can obtain the information it
needs operating completely autonomously: it can simply use onboard sensors and its own
independent measurement frame, and thus does not have to rely in any way on other agents
or external systems to implement the proposed method. In addition, ours is a computationally
simple control method. These modest requirements increase the applicability of the approach
by robots endowed with reasonable sensing and computation resources.

1.2. Related work

We review in this section works in the literature that relate in different and substantial ways
to the approach we propose. Several existing methods allow to achieve target circumnaviga-
tion by a multiagent team with constrained geometry (generally, circular). Some of them
consider the velocity of the target to be zero (Franchi, Stegagno, Rocco, and Oriolo (2010);
Marasco, Givigi, and Rabbath (2012); Montijano, Priolo, Gasparri, and Sagüés (2013)), or
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constrained or known (Franchi, Stegagno, and Oriolo (2016); Guo, Yan, and Lin (2010);
Mas, Li, Acain, and Kitts (2009); Shames, Fidan, and Anderson (2011); Shi, Li, and Teo
(2015); Swartling, Shames, Johansson, and Dimarogonas (2014)), and in some cases
only bearing sensors are needed by the agents (Mallik, Daingade, and Sinha (2016);
Zheng, Liu, and Sun (2015)). In contrast, the method we propose does not constrain the pre-
scribed team geometry. Having this freedom in a multirobot system is very relevant as it can
be used to ensure suitable interactions between its elements. One can, e.g., add more agents
to a team while preserving safety distances, or consider agents with heterogeneous sensory
capabilities –i.e., different optimal distances to the target in terms of sensing quality–. Non-
circular formations require more sophisticated coordination mechanisms such as the one nat-
urally provided by our method. We also alleviate here the constraints on the target’s motion
and decouple it from the dynamics of the group of agents, thus allowing steady formation
behaviors. Other work similarly addresses target observation in 3D space, with further con-
straints on target motions and team behaviors (Aranda, López-Nicolás, Sagüés, and Zavlanos
(2014); Poiesi and Cavallaro (2015)).

To allow the target-tracking team of agents to attain an arbitrarily defined geometric pat-
tern, the method we propose exploits gradient-based formation control (Oh, Park, and Ahn
(2015)). Each agent can compute locally its motion commands. Therefore, it is possible to run
this method relying solely on simple onboard sensors (e.g., vision). We avoid the need for the
agents to continuously maintain virtual agreed common team references, which are subject
to measurement errors and/or require communications. Various existing formation control
approaches similarly allow the agents to steer their relative distances or angles without
requiring common references (Anderson, Yu, Fidan, and Hendrickx (2008); Eren (2012);
Garcia de Marina, Jayawardhana, and Cao (2016); Krick, Broucke, and Francis (2009);
Lin, Wang, Han, and Fu (2014); Tian and Wang (2013); Zelazo, Giordano, and Franchi
(2015)). These controllers were designed for distributed scenarios (which provides benefits
in robustness and scalability) and therefore, they are not the best option to choose when
global information is available. That is to say, what they optimise is a combination of partial
cost functions that typically encompass a pair of agents and do not consider an overall
optimal motion goal.

To get an intuitive idea, consider a team of three agents a, b and c. A motion strategy
that uses separately information of pairs a− b, a− c, b− c (as with a typical distributed
system) cannot generate globally optimal motions, because each separate part lacks infor-
mation about the state of one of the agents. In contrast, optimal motions can be obtained
by using a cost function that considers jointly the states of the three agents. Our controller
provides, and suitably exploits, such optimality. Note that in our discussion we are referring
to distributed motion control (typically, gradient-based), and not to distributed optimisation
algorithms. Such algorithms can find optimal solutions to problems like the one we address,
but running them for online control tasks requires inter-agent communications and consider-
able computational effort. We do not use optimisation algorithms and our controller does not
have these requirements. We remark as well that its computational simplicity and analytical
properties make our method interesting when compared with alternative methodologies that
can also be appropriate to solve the problem such as Model Predictive Control.

Containment control is a related problem that has also received much atten-
tion (Cao, Stuart, Ren, and Meng (2011); Ji, Ferrari-Trecate, Egerstedt, and Buffa (2008);
Wang, Liu, Xiao, and Lin (2017); Wang, Liu, Xiao, and Shen (2018)). The target enclosing
problem considered here differs in important respects. In containment control, one considers
leaders (enclosing agents) and followers (enclosed agents) and designs control strategies for
both types. In contrast, for us the target to be enclosed is an uncontrolled, external agent.
Moreover, the containment goal is defined as keeping the followers in the convex hull of the
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leaders; whereas in target enclosing one defines a specific desired location of the target (typi-
cally, the centroid of the multiagent team). The problem we address is also connected with that
of achieving consensus with a variable reference, studied in, e.g., (Cao, Zhang, Li, and Chen
(2017); Ren (2010)).

The global cost function we define encodes the sum of squared distances the agents
have to travel to form the desired pattern, which is chosen with optimal orientation
and scale via solving a Procrustes shape-alignment problem (Gower and Dijksterhuis
(2004)). Similar optimisations –without studying target tracking and variable/unknown
scales as we do here– have been used to control a formation (Aranda et al. (2014);
Aranda, López-Nicolás, Sagüés, and Zavlanos (2015); Macdonald (2011)) or estimate its er-
ror (Ze-Su, Jie, and Jian (2012)). In other related work, several authors have studied how
to optimise a formation’s geometry to maximise the quality of the collective perception
of a target, typically using the estimation covariance. Works in this area have considered
different bearing or range sensors (Bishop, Fidan, Anderson, Doanay, and Pathirana (2010);
Zhao, Chen, and Lee (2013)) and studied how to define appropriate agent motion policies to
achieve the optimal formation (Martı́nez and Bullo (2006); Zhou and Roumeliotis (2011)).
As explained above, the formation optimisation considered here is of a different nature, as it
concerns the agents’ motion costs.

The paper is organised as follows. Section 2 states the addressed problem. In Section 3
we describe the computation of the optimal pattern, while Section 4 introduces the proposed
control laws. These are analysed in Section 5, where the results on formation achievement
and target tracking are given. Section 6 describes the implementation details of our approach,
whose behavior is illustrated in simulation in Section 7. Section 8 concludes the paper.

2. Problem statement

We consider a two-dimensional Euclidean space with a fixed global reference frame where all
quantities will be expressed. The proposed system consists of N−1 mobile agents, identified
by indexes i ∈ {1, ...,N −1} and obeying single-integrator kinematics, i.e.:

q̇i = ui (1)

(boldface font is used for multidimensional variables), where qi ∈ R
2 denotes agent i′s posi-

tion vector and ui ∈ R
2 is its control input. Let us denote as pq ∈ R

2 the centroid of the agent
positions. The target is defined as a point element that the agents must enclose, with position
denoted as qN ∈ R

2. The target moves with arbitrary finite-norm velocity:

q̇N = vt. (2)

We define N− as the set of N − 1 agents, and N as the set that includes all agents and the
target. We specify a desired geometric pattern for the agents in their configuration space via
relative position vectors: let us denote as cji,∈ R

2 ∀i, j ∈ N−, the vector from i to j in this
prescribed pattern. These vectors are assumed to be nonzero for i �= j. Then, the agents are
forming the pattern if and only if there exist Rp ∈ SO(2) and sp > 0 such that:

qij = spRpcij, ∀i, j ∈ N−, (3)

where we define qij = qi−qj. This can be interpreted as the current pattern of agent positions
being equal to the desired pattern up to a similarity transformation. We also define desired
vectors from the target to each of the N −1 agents: ciN ∀i ∈ N−. The desired location of the
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target is the centroid of the agents, i.e., ∑i∈N− ciN = 0. This fact ensures that pattern rotations
and scalings do not move the target from the team’s centroid, and it also will be useful in
our formal developments. The problem addressed is finding a motion strategy that drives the
agents to the desired pattern while enclosing the moving target.

3. Proposed optimal target enclosing strategy

A way to address the design of a controller to achieve the objective expressed in (3) is by
defining the following general cost function:

γg =
1
2 ∑

i∈N
∑

j∈N

||qij − sgRg(αg)cij||2, (4)

with sg being a positive scalar, αg ∈ (−π,π] an angle, and Rg = [(cosαg,sinαg)T

(−sinαg,cosαg)T ] a rotation matrix in the Special Orthogonal group of dimension two
SO(2). We note that the norm considered in this paper is the Euclidean one. This cost function
is a sum of squared distances that expresses how separated the agents are from a configura-
tion that represents a rotated and scaled version of the prescribed pattern, with the target at its
centroid. We can now precisely specify our control goal, as follows.

Definition 3.1. The target enclosing task consists in minimising the cost function γg.

Let us explain the behavior encapsulated by our definition: when γg is minimised, the
target, along its motion, will be surrounded by the agents (since it lies exactly at their centroid
when γg = 0), and meanwhile the agents’ relative positions will form a pattern having the
shape we have prescribed. Clearly, a control strategy that descends along the defined cost
function can make the agents reach the desired objective. The question is then how to suitably
define sg and Rg(αg). To optimise control efficiency, we propose to choose these parameters,
at each time instant, as those for which the rotated and scaled pattern is the closest –in terms
of γg– to the set of current positions of the agents. Thus, we find the optimal rotation, Ro =
[(cosαo,sinαo)T (−sinαo,cosαo)T ], and scaling, so, of the pattern by solving the following
optimisation problem:

(Ro(αo),so) = argmin
Rg(αg(qij))∈SO(2), sg(qij)>0

γg(Rg(αg(qij)),sg(qij),qij), (5)

which is computed at every time instant t for the current positions qij(t) of the agents and
target (i.e., ∀i, j ∈ N ). γg is actually equivalent to the function that is optimised in the or-
thogonal Procrustes problem (Gower and Dijksterhuis (2004)), and the stated optimisation
problem has an analytical solution for the pair (Ro(αo),so) that is unique except for degen-
erate cases that will be ruled out in the analysis we provide. For clarity and completeness,
we describe next the computation of the solution in terms of the formulation used in this pa-

per. To calculate the rotation angle αo that minimises γg, we will solve ∂γg
∂αg

= 0. Using that
dRg(αg)

dαg
= ARg(αg), with A = [(0,1)T ,(−1,0)T ], we can directly write:

∂γg

∂αg
= −sg ∑

i∈N
∑

j∈N

qT
ij(ARg(αg)cij). (6)
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Let us define c⊥ij = Acij. As qT
ij(ARg(αg)cij) = −sin(αg)qT

ijcij + cos(αg)qT
ijc

⊥
ij , we can make

(6) equal to zero and solve for αg to obtain the optimal angle. By doing so, one finds two
candidate optimal angles αoc that differ by π rad. and satisfy the following expression:

αoc = arctan
∑i∈N ∑ j∈N qT

ijc
⊥
ij

∑i∈N ∑ j∈N qT
ijcij

. (7)

Let us denote:

P = ∑
i∈N

∑
j∈N

qT
ijcij, P⊥ = ∑

i∈N
∑

j∈N

qT
ijc

⊥
ij . (8)

It is straightforward to see that, out of the two candidate solutions of (7), the one that makes
the second order derivative of γg positive, i.e., the angle that minimises the function, is:

αo = atan2(P⊥,P). (9)

The atan2 function is the inverse tangent of the ratio of its two arguments, with the result
placed in the quadrant that corresponds with the signs of the arguments. Observe that Ro(αo)
is independent from the scale. That is, the optimal rotation has the same value for any positive
value of the scale sg in (4). Note that the 2π discontinuity of atan2 is not relevant as what the
controller uses is not the angle αo but its associated rotation matrix, which remains continuous
in terms of P⊥ and P. The case atan2(0,0) will be discussed below.

We find next the optimal scale. Differentiating (4) with respect to the scale parameter
yields:

∂γg

∂ sg
= ∑

i∈N
∑

j∈N

sg||cij||2 −qT
ijRg(αg)cij. (10)

Notice that we can already set Rg(αg) = Ro(αo), as this rotation is the optimal one for any
sg, as explained above. Thus, making (10) equal to zero, one can easily find that the optimal
scale is:

so = ( ∑
i∈N

∑
j∈N

qT
ijRo(αo)cij)/cs, (11)

where we have defined the strictly positive constant cs = ∑i∈N ∑ j∈N ||cij||2. Noticing that
we can express ∑i∈N ∑ j∈N qT

ijRo(αo)cij = P⊥ sin(αo)+Pcos(αo), we directly have:

so = (P⊥ sin(αo)+Pcos(αo))/cs. (12)

From the definition of αo in (9), it can be readily seen that we can express: P⊥ = K sin(αo)
and P = K cos(αo) for a certain scalar K ≥ 0. Hence, it is direct from (12) that so = K/cs.
This means that the optimal scale is always positive and can only become zero (which occurs
when K = 0) in exactly the same configurations that make αo degenerate. Indeed, so = 0 ⇔
(P = 0 and P⊥ = 0) will be used to show that degeneracies do not occur with the proposed
control methodology. Let us also state these alternative expressions for future use:

P = socs cos(αo), P⊥ = socs sin(αo), P2 +P⊥2
= so

2cs
2. (13)
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Considering the above, we can now define the following overall cost function:

γ =
1
2 ∑

i∈N
∑

j∈N

||qij − soRo(αo)cij||2, (14)

where Ro(αo) is computed via (9) and so is obtained from (11). Then, we propose a gradient-
based controller –described in the next section– defined from the cost function γ . Observe
that the target is included in the function, and that if γ = 0, the agents are forming the desired
pattern, with the target in its centroid. We define an alternative cost function γ− that only
considers the interagent vectors (i.e., the target is not included):

γ− =
1
2 ∑

i∈N−
∑

j∈N−
||qij − soRo(αo)cij||2, (15)

and thus we have (observe that qij = −qji, cij = −cji):

γ = γ− + ∑
i∈N−

||qiN − soRo(αo)ciN||2. (16)

Clearly, if γ− = 0 the agents are forming their desired optimal pattern, regardless of the posi-
tion, qN, of the target.

4. Control laws

We propose two different control laws for the agents under the following general formulation:

ui = q̇i = Kc(qNi − sR(α)cNi), i ∈ N−, (17)

where Kc is a positive control gain, s > 0 is a scalar and R(α) ∈ SO(2) is a rotation matrix.
For later use, we express the relative agent dynamics with this control framework:

q̇ij = q̇i − q̇j = −Kc(qij − sR(α)cij), ∀i, j ∈ N−. (18)

The relative agent-target vectors evolve as follows:

q̇iN = −Kc(qiN − sR(α)ciN)−vt, ∀i ∈ N−. (19)

We propose the following control laws, which are based on the expression (17) and use the
optimal values so (11) and αo (9), computed at each time instant, as feedback parameters.
Controller 1: This controller uses (17) with the optimal scale and rotation angle, i.e., s = so,
α = αo.
Controller 2: To achieve target circumnavigation, we select the control variables as follows:
s = so/cos(Δα), α = αo +Δα , Δα being a constant angle satisfying 0 < |Δα | < π/2.

Remark 1. The individual agent control law (17) does not follow the negative gradient of the
cost function (14). This is so because it also takes into account the objective of keeping the
target in the group’s centroid, and the fact that the target’s free motion does not contribute to
achieving the formation. The relative vector dynamics (18), (19) reveal, still, that the agents
are indeed collectively minimising (14).
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5. Controller analysis

We provide next a number of results that characterise the behavior of the proposed approach.
We will sometimes omit the angles of the rotation matrices, for notational simplicity.

5.1. Behavior of the multiagent formation

Lemma 5.1. The optimal scale so remains constant with Controllers 1 and 2, i.e., ṡ = ṡo = 0.

Proof. We compute the time derivative of P (8):

Ṗ = ∑
i∈N

∑
j∈N

(
∂P
∂qij

)T

q̇ij. (20)

Given that ∂P/∂qij = cij and inserting (18) and (19), we get:

Ṗ = ∑
i∈N−

∑
j∈N−

cT
ij(−Kc(qij − sRcij))+2 ∑

i∈N−
cT

iN(−Kc(qiN − sRciN)−vt)

= −Kc ∑
i∈N

∑
j∈N

cT
ij(qij − sRcij)−2vT

t ∑
i∈N−

ciN. (21)

As said earlier, the desired position of the target is in the centroid of the desired pattern, i.e.,
∑i∈N− ciN = ∑i∈N− c⊥iN = 0. Therefore:

Ṗ = −Kc ∑
i∈N

∑
j∈N

cT
ij(qij − sRcij) = −Kc

(
∑

i∈N
∑

j∈N

cT
ijqij − s ∑

i∈N
∑

j∈N

cT
ijRcij

)
. (22)

Clearly, an analogous expression holds for Ṗ⊥:

Ṗ⊥ = −Kc

(
∑

i∈N
∑

j∈N

c⊥ij
T
qij − s ∑

i∈N
∑

j∈N

c⊥ij
T
Rcij

)
. (23)

Now, substituting earlier definitions (13) and noticing that:

cT
ij(Rcij) = cos(α)||cij||2, c⊥ij

T
(Rcij) = sin(α)||cij||2, (24)

(22) and (23) can be directly written as follows:

Ṗ = −Kc(P− cos(α)scs) = −Kccs(so cos(αo)− scos(α))

Ṗ⊥ = −Kc(P⊥− sin(α)scs) = −Kccs(so sin(αo)− ssin(α)). (25)

Let us now address the computation of ṡo. Consider (12), which expresses so as a function
of αo, P⊥ and P. Computing ∂ so/∂αo and then inserting the expressions (13), this partial
derivative is directly seen to be zero. We can thus write:

ṡo =
∂ so

∂P⊥ Ṗ⊥ +
∂ so

∂P
Ṗ = (sin(αo)Ṗ⊥ + cos(αo)Ṗ)/cs. (26)
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Substituting now (25) in (26), we have:

ṡo = −Kc
(
so sin2(αo)− ssin(α)sin(αo)+ so cos2(αo)− scos(α)cos(αo))

= −Kc
(
so − scos(α −αo)). (27)

Clearly, this expression is zero both for Controller 1 and Controller 2, and thus so is constant.
For Controller 1, moreover, P and P⊥ remain constant (see (25)).

Remark 2. As so is constant for both controllers, degeneracies of αo (9) cannot occur if αo

is initially non-degenerate (Section 3). Thus, so > 0 and the control laws are always well
defined. A constant scale is interesting in practice because it increases safety (in terms of, for
instance, protection against collisions) and, as the distances between elements are steady and
upper bounded, the sensing/communications are more stable and robust.

Lemma 5.2. With Controller 1, the optimal rotation angle α = αo remains constant. With
Controller 2, the optimal angle varies with a constant speed α̇ = α̇0 = Kc tan(Δα).

Proof. Controller 1: Given that Ṗ = 0 and Ṗ⊥ = 0 (Lemma 5.1), α̇o = 0 (see (9)).
Controller 2: As αo (9) is always well defined and differentiable –see Remark 2–, we can
express its time derivative as:

α̇o =
d(P⊥/P)/dt
1+(P⊥/P)2 =

PṖ⊥−P⊥Ṗ

P2 +P⊥2 . (28)

Direct substitution of (13), (25) and straightforward manipulations lead to:

α̇o =
−Kc

so
s(sin(αo)cos(α)− cos(αo)sin(α)) = Kc tan(Δα), (29)

which is the stated result.

Remark 3. A constant αo is useful as it reduces the actuation effort for the agents. In partic-
ular, with Controller 1, the target will remain –assuming a small error in its tracking– in the
same direction relative to each agent, thus an agent can more easily maintain it in its field-
of-view. The target circumnavigation allowed by Controller 2 is interesting as it provides a
more complete target representation, avoiding perceptual occlusions. It also makes it harder
for the target to escape the enclosing, if this is desired. With our method the gyrating speed is
controllable by design and constant, which is advantageous as it results in a smooth motion.

Theorem 5.3. The agents converge exponentially to the optimal desired formation with Con-
trollers 1 and 2. With Controller 1, the agents converge to a pattern that remains fixed along
time. With Controller 2, they converge to a pattern that gyrates with constant angular velocity
equal to Kc tan(Δα).

Proof. Consider for the analysis the dynamics in (18).
Controller 1. Since both s = so and α = αo are constant (Lemmas 5.1 and 5.2), we can
directly conclude the exponential convergence of every interagent vector qij to its constant
desired vector soRo(αo)cij.
Controller 2. We have:

q̇ij = −Kc

(
qij − (so/cos(Δα))R(α)cij

)
, ∀i, j ∈ N−. (30)
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where so is constant and α = α(t = 0)+Kc tan(Δα)t = αo(t = 0)+Δα +Kc tan(Δα)t (Lemmas
5.1 and 5.2). Assume for simplicity and without loss of generality that αo(t = 0) = 0. Solving
the differential equation (30) yields:

qij(t) = (qij(0)− socij)e−Kct + soR(Kc tan(Δα)t)cij. (31)

Thus, qij converges exponentially to a circular orbit of radius so||cij||, along which it moves
at fixed speed. As (31) holds for every vector qij, ∀i, j ∈N−, the full formation with constant
optimal scale is achieved exponentially, while it rotates with constant speed Kc tan(Δα).

5.2. Target tracking performance

After dealing with the interagent behaviors, we now address how the control system performs
in regard to tracking the target, i.e., we characterise its ability to maintain the target enclosed
and as close as possible to the centroid of the multiagent team.

Theorem 5.4. For Controllers 1 and 2, the centroid pq of the multiagent group tracks the
target at all times with a velocity ṗq(t) = Kc(qN(t)−pq(t)). For Controller 1, moreover, the
velocity of every one of the agents converges exponentially to this tracking velocity.

Proof. For both Controller 1 and 2, the dynamics of the centroid can be computed using
(17) as follows:

ṗq =
1

N −1 ∑
i∈N−

q̇i =
Kc

N −1
( ∑
i∈N−

qNi − sR ∑
i∈N−

cNi). (32)

Given that ∑i∈N− cNi = 0 due to the target’s desired position being at the centroid of the
prescribed pattern, we have:

ṗq =
Kc

N −1 ∑
i∈N−

qNi =
Kc

N −1

(
(N −1)qN − ∑

i∈N−
qi

)
= Kc(qN −pq). (33)

Thus, the centroid purely tracks the target, and its evolution is completely decoupled from the
formation geometry.
Controller 1. When the agents are forming the prescribed pattern, the scaling and rotation of
this pattern are obviously equal to so and Ro. Each position vector from the current centroid
to a given agent is then equal to the optimally scaled and rotated vector from the centroid
(occupied by the target) to the agent in the desired pattern. Thus, for Controller 1:

qi −pq = soRociN,∀i ∈ N−, (34)

a condition that will be reached with exponential convergence (see Theorem 5.3). Therefore,
it is direct from (17) that the difference between the agent velocities will converge to zero,
i.e., all the agents will have the following velocity:

q̇i = Kc(qNi − soRocNi) = Kc((qN −qi)+(qi −pq)) = Kc(qN −pq), ∀i ∈ N−, (35)

as claimed in the statement of this result.
It is then clear that for both controllers, the tracking behavior is equivalent to that of a

virtual agent placed in the team’s centroid which continuously tracks the target’s position (i.e.,
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Figure 1. Illustration of collision avoidance. s = so, R = Ro.

tries to capture it). The target’s speed ||vt||, the gain Kc and the maximum speed attainable by
the agents determine how closely this tracking is achieved. Note also that the angular speed
of the pattern, Kc tan(Δα), is decoupled from the formation achievement and target tracking
performances (dependent on Kc), because Δα can be selected freely.

5.3. Collision avoidance

We provide next conditions under which collisions will not occur for the proposed target
enclosing methodology. We model every agent as a disk of physical radius r, and the target
as a disk of radius rt . We denote rm = max(r,rt), and assume that so||cij||> r+ rm ∀i, j ∈ N .

Theorem 5.5. For Controllers 1 and 2, if the initial configuration is such that ||qij −
soRocij||< so||cij||−(r+rm) ∀i, j ∈N , there are no interagent collisions. If, furthermore, the
speed of the target is bounded as ||vt||< Kc(so mini(||ciN||)−(r+rt)), there are no collisions
between any agent and the target with Controller 1.

Proof. The arguments are illustrated in Fig. 1.
Interagent collisions. Agents i and j collide if qij enters the collision circle defined by

||qij|| < (r + rm). qij is initially in the safety circle ||qij − soRocij|| < so||cij||− (r + rm). Ob-
serve that due to the exponential convergence (Theorem 5.3), it is direct to see that each vector
qij (18) gets monotonically closer to its desired reference soRocij, either constant (Controller
1) or gyrating (Controller 2). This readily implies that it cannot leave the safety circle.

Agent-target collisions. Agent i and the target collide if qiN enters the circle defined by
||qiN|| < (r + rt). qiN is initially in the safety circle ||qiN − soRociN|| < so||ciN|| − (r + rt)
(recall rt ≤ rm). The controller pulls it directly towards the centre of the circle (the constant
reference soRociN); let us denote this formation vector as: viN = −Kc(qiN − sR(α)ciN), so
that (19) is q̇iN = viN − vt ∀i ∈ N−. Thus, clearly, if ||vt|| < ||viN|| then q̇T

iNviN > 0, which
implies qiN will remain in the circle. In particular, it suffices to ensure this condition when
qiN is on the edge of the circle. In that case, ||viN|| = Kc(so||ciN||− (r + rt)), so the condition
is satisfied for all i if ||vt|| < Kc(so mini(||ciN||)− (r + rt)), as stated. Observe that collisions
among more than two agents are ruled out under the conditions of the Theorem, since these
conditions are formulated for every pair of agents i, j. In addition, note that the controller has
not been modified in our collision avoidance study. Therefore, all the stability results obtained
in Section 5 remain valid.

The intuition behind this analysis is that there are no collisions if the team is sufficiently
close to the desired formation initially. The stated conditions depend on the scale so, which
will be typically high enough when the agents are initially sufficiently separated, and close to
the formation. Agent-target collisions with Controller 2 behave similarly to Controller 1, but
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they are more involved to analyse due to the desired formation vectors rotating over time.
We will finish our analysis of the controller with the observations that follow.

Remark 4. In gradient-based undirected formation control, systematic errors
either in the measurements or in the formation’s prescription lead to persis-
tent group motions, which may be rectilinear (Dimarogonas and Kyriakopoulos
(2008)) or circular (Garcı́a de Marina, Cao, and Jayawardhana (2015);
Mou, Belabbas, Morse, Sun, and Anderson (2016)). For our controller, such errors might
lead to circular group motions around the target –a behavior similar to that of Controller 2–.
Also, drifts of the formation scale due to these inconsistencies can be typically compensated
by the agents via appropriate adjustment of the value of s.

Remark 5. Switching between Controllers 1 and 2 enables interesting flexible behaviors. For
instance, the agents can start gyrating around the pattern when they need to perceive occluded
parts of it, or when the target slows down and thus it becomes safer and more comfortable for
the target and less energy-consuming for the agents to circumnavigate it. They can also choose
to selectively rotate the multiagent pattern so as to guarantee safe navigation in the presence
of external obstacles. Importantly, as the scale is constant and equal for both controllers, such
back-and-forth switches will be seamless. Also, there are ways to ensure in practice that the
scale is lower bounded with the proposed controllers, e.g., agents with knowledge of distances
may use it to steer the team’s optimal scale (one agent suffices for this). The assignment of
agents to places in the formation can be exploited as well, as it also influences the scale value.

6. Method implementation

We discuss next the information needed to compute the proposed controller. A key fact is that
the method can be implemented by each agent using its local measurements, in a completely
decentralised manner. Indeed, in order to calculate its control input, it is sufficient for an agent
k to measure the relative positions of the other agents and the target with respect to itself (i.e.,
qjk, ∀ j ∈ N ). Note that from these measurements, k can directly compute all the vectors it
needs (i.e., all qji when j �= k, i �= k). Therefore, communications are clearly not needed.

For the purposes of the technical analysis, in the paper we express all the variables of the
controller in a global reference frame. However, a crucial property is that the agents do not
need to have access to this common global reference: indeed, the control can be computed
if each agent uses a local and arbitrarily oriented coordinate frame, as illustrated next. First,
as discussed in the previous paragraph, all position measurements (qji) used are relative, so
no common coordinate origin for the different agents is needed. Furthermore, the specific
orientation of each agent’s reference frame is irrelevant. To see this, let us define Pk ∈ SO(2)
as the rotation matrix between the global frame and the local frame in which agent k operates.
We denote with a superscript Lk the variables expressed in k′s local frame and we have, then,
that qLk

ij = Pkqij ∀i, j ∈N . We next look at (4), and assume given fixed positions qi ∀i ∈N .
We can write (we do not notate the angles of the rotations, for increased simplicity):

γLk
g (sLk

g ,RLk
g ) =

1
2 ∑

i∈N
∑

j∈N

||qLk
ij − sLk

g RLk
g cij||2

=
1
2 ∑

i∈N
∑

j∈N

||qij − sLk
g P−1

k RLk
g cij||2 = γg(sLk

g ,P−1
k RLk

g ). (36)

As explained in Section 3, the optimal rotation is independent from the scale (that is, from
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sLk
g in (36)). Hence, it is direct to see that the unique rotations in the two frames involved that

solve the optimisation problem (5) must be such that Ro = P−1
k RLk

o , i.e., RLk
o = PkRo. Let us

now examine the expression for the optimal scale (11) when computed in the local frame:

sLk
o = ( ∑

i∈N
∑

j∈N

qLk
ij

T
RLk

o cij)/cs =
(

∑
i∈N

∑
j∈N

(Pkqij)T(PkRocij)
)
/cs. (37)

As both vectors in each of the scalar products are rotated by the same matrix Pk, it is direct,
by comparing (37) and (11), to see that sLk

o = so. Observe that for the parameters of Controller
2 (Section 4), one easily sees that sLk = s and (denoting as RΔα the rotation by an angle Δα )
it also holds that RLk = RΔα RLk

o = RΔα PkRo = PkRΔα Ro = PkR. We can then write down
the common expression for both controllers (17) when computed in k′s local frame:

uLk
k = Kc(qLk

Nk − sLkRLkcNk) = Kc(PkqNk − sPkRcNk) = Pkuk. (38)

Hence, one directly concludes that the exact same motion is obtained when the control is
computed in each of the two frames.

We also note that in a possible case where k can only measure some (i.e., not all) of its
neighbors’ relative positions, then it can obtain the remaining measurements via communi-
cations with other agents. By using exchanged relative measurements, k can reconstruct the
vectors it can not directly measure, and also estimate the differences in orientation between
local frames, so that the information received from other agents is integrated consistently. Let
us remark that the computational cost of the proposed approach is low, because the optimal
parameters –angle (9) and scale (11)– can be computed analytically.

6.1. Implementation without distance measurements

The control law (17) can be computed even if the agents do not possess information of dis-
tances. To see this, consider an agent that can measure (e.g., using angular sensors) the relative
positions of the other agents and the target up to a given time-varying unknown scale. That
is, agent k knows rkqij for all i, j ∈ N , with rk > 0. Then, looking at (9), notice that k can
compute an optimal angle with its no-distance data (we notate this with a superindex ndk):

αndk
o = atan2( ∑

i∈N
∑

j∈N

rkq
T
ijc

⊥
ij , ∑

i∈N
∑

j∈N

rkq
T
ijcij)

= atan2(rkP
⊥,rkP) = atan2(P⊥,P) = αo, (39)

i.e., it computes the same optimal angle as in the case where distance information is available.
In addition, the agent can also compute an optimal scale (see (11)):

sndk
o = ( ∑

i∈N
∑

j∈N

rkq
T
ijR(αo)cij)/cs = rkso, (40)

i.e., the result it obtains is weighted by its own unknown scale. Then, if k computes its control
law (either for Controller 1 or 2) following (17), it will have:

uk = Kc(rkqNk − sndkRndk(αndk)cNk) = Kc(rkqNk − rksR(α)cNk)
= rk(Kc(qNk − sR(α)cNk)). (41)
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Thus, the control law is the same as when the distances are known, except for a weighting
of the motion control action by a scale factor rk. We can define a common scale reference
for all agents in a direct way by, e.g., making all of them impose the constraint ||qi j|| = 1 for
a given nonzero measurement (i, j), and scale the magnitude of all their position measure-
ments accordingly. Then, all agents will share the same scale factor, rk = rg for all k, and an
effective control gain rgKc. Clearly, the expressions for the evolutions of the optimal scale
and angle in Lemmas 5.1 and 5.2 are independent from the value and time variation of the
control gain, as long as this value is always common to all agents. Thus, the desirable types
of behaviors of the controller analysed in Section 5 will be maintained. Note also that if an
agent employs measurements received from other agents, it is possible to correct the relative
scale inconsistencies existing in its data without needing absolute distance measurements.

Let us finally describe a possible practical implementation setup. Each
robot can carry an omnidirectional vision sensor (as in, e.g., the work
(Das, Fierro, Kumar, Ostrowski, Spletzer, and Taylor (2002)). Using the size in the im-
age of the viewed agents or the size of visual markers, it is possible for a robot to directly
measure the relative position vectors from itself to the other robots and the target. In a
general case, these vectors are expressed in the robot’s image frame, and their length is equal
to the actual metric distance multiplied by an unknown scale factor. These measurements are
sufficient to implement the controller.

7. Simulation examples

We evaluate next the proposed method in simulation. The target moved following sinusoidal
patterns in all tests. Fig. 2 illustrates the first three examples we present. In the first of them,
Controller 1 was used by a team of eight agents with a square-shaped prescribed geometry. It
can be seen that the desired enclosing behavior materialised and, as theoretically expected, a
constant optimal scale (equal to 0.97, with respect to the prescribed formation), and pattern
rotation angle (0.78 rad, in an arbitrary fixed reference frame) were obtained. Also, the cost
function γ− (15) vanished exponentially, while γ did not, due to the persistent motion of
the target. We illustrate another example of Controller 1 with a six-agent team and a triangle-
shaped desired geometry. To test the robustness of the proposed approach, we added Gaussian
noise to each relative position measurement used by the agents. In addition, we defined the
control gain as equal for all agents, but time-varying throughout the execution, to model the
case where distance measurements are not available (see Section 6.1). The effects of noise
were apparent, but the team exhibited a satisfactory behavior. In particular, neither the angles
nor the scales of the pattern computed by the different agents drifted during the execution.

We also report on an execution of Controller 2 with a scalene triangular desired pattern.
The plots show that the three agents converged towards this pattern. The scale s kept a value
equal to 2.22. As the agents circumnavigated the target, the distance between their centroid
and the target remained small thanks to the tracking properties of the controller.

Finally, we provide a comparison (illustrated in Fig. 3) of our method with the target encir-
clement approach presented in Franchi et al. (2016). We used a four-robot team and a circular
desired pattern. We implemented our method using Controller 2, which produces a target cir-
cumnavigation behavior. To provide a balanced comparison, we selected the parameters in the
two methods such that in both cases the agents reached an equivalent final configuration and
gyrating speed, with identical initial positions and very similar initial velocities, and identical
motion of the target. Both methods can be seen to provide suitable performance. The ap-
proach in Franchi et al. (2016) has more robustness and scalability because it uses distributed
coordination. Also, it has strong collision avoidance guarantees and is directly applicable in
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3D space. The method we propose is arguably more flexible in the team geometries that can
be chosen, and achieves the desired enclosing configuration of the system more quickly. In
addition, our method relaxes some information requirements, because neither distance mea-
surements nor communications are needed. We compare the cost functions (γ , γ−) as they
encapsulate the control objective for the two approaches. It must be noted, however, that the
controller in Franchi et al. (2016) is not designed to optimise these cost functions.

8. Conclusion

This paper introduced a novel method to perform the task of enclosing a moving target in
a two dimensional environment with a team of mobile agents. The proposed approach is
interesting because it requires few resources from the agents and exploits the information
available in an optimal manner towards solving the problem at hand. An analysis that reveals
the uniform variation of the multiagent pattern’s rotation and the constancy of its scale serves
us to show that the team exhibits steady behaviors, even in the absence of common references
shared by the agents. The use of global information is reasonable for tasks where few robots
are used and for which stable and predictable behaviors are of particular relevance. Still, it
would be clearly interesting to improve the robustness to failure of the proposed method. One
direction to follow in this respect can be to study the case of temporary agent faults. Another
idea can be to use only partial information, searching for a balance between the amount of
information used and the steadiness and stability of behavior. Aside from investigating these
issues, other appealing topics for future work include non-holonomic motion models, and the
definition of optimal desired formation geometries based on task-related criteria.
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Aranda, M., López-Nicolás, G., Sagüés, C., Zavlanos, M. M., 2015. Coordinate-free formation stabi-
lization based on relative position measurements. Automatica 57, 11–20.

Bishop, A. N., Fidan, B., Anderson, B. D. O., Doanay, K., Pathirana, P. N., 2010. Optimality analysis
of sensor-target localization geometries. Automatica 46 (3), 479 – 492.

Cao, Y., Stuart, D., Ren, W., Meng, Z., 2011. Distributed Containment Control for Multiple Au-
tonomous Vehicles With Double-Integrator Dynamics: Algorithms and Experiments. IEEE Trans-
actions on Control Systems Technology 19 (4), 929–938.

Cao, Y., Zhang, L., Li, C., Chen, M. Z. Q., 2017. Observer-Based Consensus Tracking of Nonlinear
Agents in Hybrid Varying Directed Topology. IEEE Transactions on Cybernetics 47 (8), 2212–2222.

Das, A. K., Fierro, R., Kumar, V., Ostrowski, J. P., Spletzer, J., Taylor, C. J., 2002. A vision-based
formation control framework. IEEE Transactions on Robotics and Automation 18 (5), 813–825.

Dimarogonas, D. V., Kyriakopoulos, K. J., 2008. A connection between formation infeasibility and
velocity alignment in kinematic multi-agent systems. Automatica 44 (10), 2648–2654.

Eren, T., 2012. Formation shape control based on bearing rigidity. International Journal of Control
85 (9), 1361–1379.

Franchi, A., Stegagno, P., Oriolo, G., 2016. Decentralized multi-robot encirclement of a 3D target with
guaranteed collision avoidance. Autonomous Robots 40 (2), 245–265.

Franchi, A., Stegagno, P., Rocco, M. D., Oriolo, G., 2010. Distributed target localization and encir-

15



0 2 4 6 8 10 12 14

−4

−2

0

2

4

x (m)

y 
(m

)

 

 

Desired pattern

−2 0 2 4 6 8
−1

0

1

2

3

4

5

6

7

8

9

x (m)

y 
(m

)

Desired pattern

0 500 1000 1500 2000
0

.01

.02

.03

Time (s)

V
el

oc
ity

 n
or

m
s 

(m
/s

)

0 500 1000 1500 2000
0

5

10

15

Time (s)

γ 
an

d 
γ −

0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (s)

V
el

oc
ity

 n
or

m
s 

(m
/s

)

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

Time (s)

γ 
an

d 
γ −

0 500 1000 1500 2000

0.76

0.78

0.8

0.82

0.84

Time (s)

O
pt

im
al

 a
ng

le
s 

(r
ad

)

0 500 1000 1500 2000

1.34

1.36

1.38

1.4

1.42

1.44

1.46

Time (s)

O
pt

im
al

 s
ca

le
s

0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

Time (s)

K
c

−1 0 1

−2

−1.5

−1

−0.5

0

0.5

x (m)

y 
(m

)

Desired pattern

0 2000 4000 6000 8000
−4

−2

0

2

4

O
pt

im
al

 a
ng

le
s 

(r
ad

)

Time (s)
0 2000 4000 6000 8000

0

1

2

3

4

5

6

γ 
an

d 
γ −

Time (s)

0 2000 4000 6000 8000
0

0.5

1

1.5

2x 10
−3

Time (s)

V
el

oc
ity

 n
or

m
s 

(m
/s

)

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

D
is

t. 
ce

nt
ro

id
−

ta
rg

et
 (

m
)

Time (s)

Figure 2. Simulations. Top row: agents’ and target’s paths for example 1 (left) and example 2 (right). Agents are circles –
different markers and colors are also used to ease interpretation–, target is a square and its path is shown in dashed line. Initial,
final and some intermediate positions of the elements are marked. Second row, left to right: velocity norms for agents –solid
line– and target –dashed line–, and cost functions (always γ ≥ γ−) for example 1; velocity norms, and cost functions, for example
2 with Gaussian noise. Third row: optimal angles (left) and scales (centre), and control gain (right) for example 2. Bottom-left:
agents’ and target’s paths for example 3. Final agent positions joined by dashed lines. Bottom-right panel, top: optimal angles
(left) and cost functions (right) for example 3. Bottom: velocity norms and centroid-target distance for example 3.
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