18 research outputs found

    Design, analysis and test verification of advanced encapsulation systems, phase 2 program results

    Get PDF
    Optical, electrical isolation, thermal structural, structural deflection, and thermal tests are reported. The utility of the optical, series capacitance, and structural deflection models was verified

    Prevalence of osteopathologies in a single center cohort of survivors of childhood primary brain tumor

    Get PDF
    BackgroundChildhood primary brain tumors (CPBT) are the second largest group of childhood malignancies and associated with a high risk for endocrine late effects.ObjectiveTo assess endocrine late effects and their relevance for the development of osteopathologies in survivors.MethodsThis single center cross sectional study investigated data from 102 CPBT survivors with a mean age of 13.0 years and a mean age at diagnosis of 8.7 years. Clinical, biochemical, radiographic, and anamnestic data regarding endocrine and bone health were obtained at study visits. In addition, data regarding tumor stage and therapy was obtained by chart review. An expert opinion was applied to define presence of osteopathologies.ResultsImpaired bone health, defined by at least one pathological screening parameter, was present in 65% of patients. 27.5% were found to have overt osteopathologies per expert opinion. 37.8% displayed a severe vitamin D deficiency (25-OH vitamin D < 10 ng/ml) and 11% a secondary hyperparathyroidism. Patients with osteopathologies had lower 25-OH vitamin D levels compared to patients without osteopathologies. Multiple endocrine late effects were present: diabetes insipidus in 10.8%, aberrant pubertal development in 13.7%, central hypocortisolism in 14.9%, thyroid dysfunction in 23.8% and growth hormone deficiency in 21.8%. A total of 31.3% of survivors displayed any endocrinopathy. Tumors located near hypothalamic structures and patients who received irradiation had a higher likelihood of endocrine morbidity.ConclusionThis study indicates that endocrine deficiencies are common in pediatric survivors of CPBTs. Osteopathologies are present in this cohort. A prominent effect of hormonal deficiencies on bone health was not detected, possibly because patients were sufficiently treate for their endocrine conditions or indicating resilience of the childhood bone remodeling process. Vitamin D deficiency is frequent and should be treated as recommended

    Bilobalide modulates serotonin-controlled behaviors in the nematode Caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysfunctions in the serotonergic system have been implicated in several neurological disorders such as depression. Elderly individuals who have been diagnosed with clinical depression show elevated cases of neurodegenerative diseases. This has led to suggestions that modulating the serotonin (5-HT) system could provide an alternative method to current therapies for alleviating these pathologies. The neuroprotective effects of bilobalide <it>in vitro </it>have been documented. We aim to determine whether bilobalide affects the 5-HT system in the nematode <it>C. elegans</it>. The wild type worms, as well as well-characterized 5-HT mutants, were fed with bilobalide in a range of concentrations, and several 5-HT controlled behaviors were tested.</p> <p>Results</p> <p>We observed that bilobalide significantly inhibited 5-HT-controlled egg-laying behavior in a dose-dependent manner, which was blocked in the 5-HT receptor mutants (<it>ser-4, mod-1</it>), but not in the 5-HT transporter (<it>mod-5</it>) or synthesis (<it>tph-1</it>) mutants. Bilobalide also potentiated a 5-HT-controlled, experience-dependent locomotory behavior, termed the enhanced slowing response in the wild type animals. However, this effect was fully blocked in 5-HT receptor <it>mod-1 </it>and dopamine defective <it>cat-2 </it>mutants, but only partially blocked in <it>ser-4 </it>mutants. We also demonstrated that acetylcholine transmission was inhibited in a transgenic <it>C. elegans </it>strain that constitutively expresses Aβ, and bilobalide did not significantly affect this inhibition.</p> <p>Conclusion</p> <p>These results suggest that bilobalide may modulate specific 5-HT receptor subtypes, which involves interplay with dopamine transmission. Additional studies for the function of bilobalide in neurotransmitter systems could aid in our understanding of its neuroprotective properties.</p

    Ceruloplasmin Deficiency Reduces Levels of Iron and BDNF in the Cortex and Striatum of Young Mice and Increases Their Vulnerability to Stroke

    Get PDF
    Ceruloplasmin (Cp) is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT) controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF), known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF

    Neurotransmitters and Energy Metabolites in Amyloid-Bearing APP SWE Ï«PSEN1dE9 Mouse Brain

    No full text
    ABSTRACT Alzheimer&apos;s disease is characterized by amyloid peptide formation and deposition, neurofibrillary tangles, synaptic loss and central cholinergic dysfunction, dysfunction of energy metabolism, and dementia; however, the interactions between these hallmarks remain poorly defined. We studied a well characterized mouse model of amyloid deposition, the doubly transgenic APP SWE Ï«PSEN1dE9 mouse. At 10 to 14 months of age, these mice had high levels of amyloid peptides (6.6 g/g wet weight) and widespread amyloid plaques. Extracellular levels of acetylcholine (ACh) were determined by microdialysis in the hippocampus and were comparable with nontransgenic mice from the same colony. In the open field, both mouse strains responded with a 3-fold increase of hippocampal ACh release. Exploratory behavior of the transgenic mice appeared normal. Infusion of scopolamine evoked 5-to 6-fold increases of ACh levels in both mouse strains. High-affinity choline uptake and cholinesterase activities were identical in both mouse lines. Extracellular levels of glucose and glycerol were similar in control and transgenic mice, whereas lactate levels were slightly (p Ï­ 0.06) and glutamate levels significantly (p Ï­ 0.02) lower in transgenic mice. Exploration caused increases of glucose and lactate, whereas infusion of scopolamine (1 M) increased glucose but not lactate. Glutamate levels were increased by scopolamine, whereas glycerol remained constant under all the conditions. We conclude that amyloid peptide production and plaque deposition causes minor changes in cholinergic function and energy metabolites in transgenic mice in vivo. Amyloid peptide formation and/or deposition may not be sufficient for long-term cholinergic or metabolic dysfunction. Alzheimer&apos;s disease (AD) is the most frequent type of dementia in humans and is characterized by cognitive dysfunction and early memory loss In clinical studies, AD can be distinguished in early onset disease (familial AD) and late-onset, sporadic diseas

    Title page Neurotransmitters and Energy Metabolites in Amyloid-bearing APP SWE x PSEN1dE9 Mouse Brain JPET #161091 2 Running title page Running title: Influence of amyloid on brain neurochemistry Correspondence

    No full text
    Abstract Alzheimer´s disease is characterized by amyloid peptide formation and deposition, neurofibrillary tangles, synaptic loss and central cholinergic dysfunction, dysfunction of energy metabolism, and dementia; however, the interactions between these hallmarks remain poorly defined. We studied a well-characterized mouse model of amyloid deposition, the doubly transgenic APP SWE x PSEN1dE9 mouse. At 10-14 months of age, these mice had high levels of amyloid peptides (6.6 µg/g wet wt.) and widespread amyloid plaques. Extracellular levels of acetylcholine were determined by microdialysis in the hippocampus and were comparable to non-transgenic mice from the same colony. In the open field, both mouse strains responded with a threefold increase of hippocampal acetylcholine release. Exploratory behavior of the transgenic mice appeared normal. Infusion of scopolamine evoked 5-6fold increases of acetylcholine levels in both mouse strains. High-affinity choline uptake (HACU) and cholinesterase activities were identical in both mouse lines. Extracellular levels of glucose and glycerol were similar in control and transgenic mice while lactate levels were slightly (p=0.06), and glutamate levels significantly (p=0.02) lower in transgenic mice. Exploration caused increases of glucose and lactate while infusion of scopolamine (1 µM) increased glucose but not lactate. Glutamate levels were increased by scopolamine while glycerol remained constant under all conditions. We conclude that amyloid peptide production and plaque deposition causes minor changes in cholinergic function and energy metabolites in transgenic mice in vivo. Amyloid peptide formation and/or deposition may not be sufficient for long-term cholinergic or metabolic dysfunction. JPET #161091

    Transition for adolescents with a rare disease: results of a nationwide German project

    No full text
    Abstract Purpose The transition process from paediatric/adolescent to adult medical care settings is of utmost importance for the future health of adolescents with chronic diseases and poses even more difficulties in the context of rare diseases (RDs). Paediatric care teams are challenged to deliver adolescent-appropriate information and structures. Here we present a structured transition pathway which is patient-focused and adoptable for different RDs. Methods The transition pathway for adolescents 16 years and older was developed and implemented as part of a multi-centre study in 10 university hospitals in Germany. Key elements of the pathway included: assessment of patients’ disease-related knowledge and needs, training/educational and counselling sessions, a structured epicrisis and a transfer appointment jointly with the paediatric and adult specialist. Specific care coordinators from the participating university hospitals were in charge of organization and coordination of the transition process. Results Of a total of 292 patients, 286 completed the pathway. Deficits in disease-specific knowledge were present in more than 90% of participants. A need for genetic or socio-legal counselling was indicated by > 60%. A mean of 2.1 training sessions per patient were provided over a period of almost 1 year, followed by the transfer to adult care in 267 cases. Twelve patients remained in paediatric care as no adult health care specialist could be identified. Targeted training and counselling resulted in improved disease-specific knowledge and contributed to empowering of patients. Conclusion The described transition pathway succeeds to improve health literacy in adolescents with RDs and can be implemented by paediatric care teams in any RD specialty. Patient empowerment was mainly achieved by individualized training and counselling

    Synthesis of benzopolycyclic cage amines: NMDA receptor antagonist, trypanocidal and antiviral activities.

    No full text
    The synthesis of several 6,7,8,9,10,11-hexahydro-9-methyl-5,7:9,11-dimethano-5H-benzocyclononen-7-amines is reported. Several of them display low micromolar NMDA receptor antagonist and/or trypanocidal activities. Two compounds are endowed with micromolar anti vesicular stomatitis virus activity, while only one compound shows micromolar anti-influenza activity. The anti-influenza activity of this compound does not seem to be mediated by blocking of the M2 protein
    corecore