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PREFAGE

This report documents yvhe second phase of a three-phase proaram that is
a Joint effort by Spectrolizb and Hughes Aircraft Company. In Phase 1
an analytical model was developed which enabled the prediction of per-
formance of various encapsulation designs. Models relating to the
thermal, optical, structural, and electrical performance were developed,
Using this analytical method the most cost effective module desian can
be found.

The objective of the second phase was to verify the models by testing
modules and coupons, The models may then be modified as necessary to
bring predicted and empivically found results into agreement, Addi-

tionally, full-size modules of the most cost effective desion will be
built and put through the JPL qualification test sequence.

During the third phase Spectrolab will finalize the low cost design and
deliver the design to JPL,

Phase two testing is reported in this document. Full size modules
have not yet been built.
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1.0 SUMMARY

The test data reported herein and the correlations of these data with the optical, electrical
isolation, structural, and thermal models developed during Phase 1 of the program [3]* led to the

following conclusions regarding analytical model verification and module performance:
1, Optical Test

¢ The utility of the optical model has been verified. This model was used to predict cell
electrical power output within 25 percent of the measured p+wver output,

* The optical model underpredicted cell power output for both xenon and tungsten
illumination sources. This error was probably due to the assumption of a perfectly
smooth surface for an eiched cell, As a result, the reflectance at the cell/pottant
interface was overestimated,

* There was better agreement between test data and analytical prediction for the xenon
source than for the tungsten source,

* Agreement between test data and analytical predictions was best for AR-coated and/
or texturized cells,

2, Electrical Isolation Test

¢ The utility of the series capatitznce model has been verified. This model was able to
predict breakdown voltages between the maximum and minimum breakdown voltages
measured during the test,

¢ The model overpredicts the dependence of encapsulation system breakdown voltage on
pottant thickness,

* All electrical failures occurred at the edges of the simulated solar cells in the test
specimens, No failures could be attributed to the presence of bubbles in the pottant.

* Inclusion of Craneglas in the pouant slightly increases the electrical isolation capa-
bility of the encapsulation system.

3, Thermal Structural Test

* Data from this test were of limited value due to instrumentation problems and failure
to achieve steady-state conditions,

o Strain attenuation in EVA was observed (as predicted) but quantitative correlation
was not possible. EVA was a poor choice of pottant for verification of the analytical
model. A limited retest is recommended with a pottant modulus of elasticity greater
than 2 X 10* psi,

4, Structural Deflection Test

o The utility of the structural deflection model has been verified, Defiections measured
at the center of each module agreed to within 10 percent of the predicted deflections for
all but the steel substrate module. Measured cell stresses agreed to within 10 percent
of the predicted cell stresses for plain wood substrate modules,

* Numbers in brackets designate references at the end of this report,
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o Measured cell stresses were approximately 50 percent lower than those predicted for
both glass superstrate and sieel substrate modules. The structural “membrane effect”
in the module load-bearing r:zmber, which was not taken into account in the model, is
thought to be responsible for these results, Further consultation with JPL structural
analysts is recommended to confirm this hypothesis,

* No cells were cracked during performance of the test,

* Ribbed wood substrate modules require careful design to minimize stress concentra-
tions at the rib ends, One way tc overcome this stress concentration problem is to
support the rib ends as well as the module edges.

5, Thermal Test

e The thermal model overpredicts cell temperature somewhat, This overprediction was
due mainly 0 uncertainties in the air flow pattern around the test modules, uncertain-
ties in the distribution of incident radiant energy flux in the plain of the modules, a
suspected lateral temperature gradient in the glass {ront panel of the test set-up, and
uncertainties in the assumed value of emissivity of the test chamber walis. Agreement
between predictions and test data was best for those situations where the module had a
high emissivity back cover.

e Cell temperature is not significantly affected by pottant thickness,

* The predicted trend of decreasing cell temperature with increasing module backside
emissivity was confirmed.

¢ Insulation of the backsides of the test modules lead to cell temperature increases
ranging from 4.3°C to 15°C,

1-2
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2.0 INTRODUCTION

2.1 OVERVIEW

"Chis report contains information on a series of tests performed in support of Spectrolab
Letter Contract 79PMY263-6321/88774, These tests were part of a larger program concerned
with the development of analytical tools for performing tradeoffs in the thermal, optical,
structural, and electrical isolation design of encapsulation systemis for flat-plate photovoltaic
modules. The analytical methodclogy and computer programs were developed during Phase 1 of
the program and are described in reference 3, Test verification of the analytical methodology was
the objective of Phase 2 of the program and is the subject of this report.

The role of the encapsulation system in a photovoltaic module is to package, protect, and
support the solar cells and electrical interconnects of the module. Construction elements of a
typical encapsulation system for the accomplishment of these goals are illustrated in Figure 2-1.
As might be exspected, the design of encapsulation systems requires tradeoffs between conflicting
design requirements, For example, structural requirements favor a thick layer of pottant between
the front cover and cells of a glass superstrate module; on the other hand, optical and thermal
requirements favor a thin pottant layer for this type of module. In the past, design tradeoffs to
satisfy these requirements have been carried out in a cut-and-dry fashion with resultant heavy
investments in time and money. Development of analytical tools for the rational design of these
construction clements was the objective of Phase 1 of the program,

a - : st TRANSPARENT OUTER COVER
et TRANSPARENT POTTANT

SUBSTRATE
MODULZ me—tw~ OPAQUE POTTANT

t,...._._.. STRUCTURAL SUBSTRATE

METAL
E

NS
FAAM ;ﬁczmo, GASKET INTERCONNECTS  CELL

// / = TRANSPARENT STRUCTURAL
SUPERSTRATE
e—am THANSPARENT POTTANT

SUPERSTRATE

MODULE >
/ et OPAQUE POTTANT

LLLLLLLL L L L L L LL L L L L L L) = BACK COVER

Figure 2~1, Construction siemants of photovoltaic modules.
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Two types of modules were investigated during both phases of the program

1, A superstrate module in which structural support is provided by a transparent load-
bearing member on the sun side of the cells

2, A substrate module in which structural support is provided by an opaque backing
material behind (i.e. on the anti-sun side) the cells.

The arrangement of construction elements for each module type is illustrated in Figure 2-1,
Structural support for the cells is provided by the structural substrate in a substrate module and
by the transparent superstrate in a supersirate module. The pottant protects the cells and the cell
interconnects from the environment, The transparent superstrate in a superstrate module and the
transparent front cover in a substrate module help protect the pottant by screening out some of
the ultraviolet radiation in the solar spectrum. The superstrate and front cover aiso provide
protection against soiling and akrasive action by win I-blown sand and dirt, Sealing tape around
the edges of the module prevents moisture infiltration into the pottant. The gasket cushions the
module against shock due to rough handling and also permits the module to expand and contract
during the daily heating and cooling cycle. The back cover on a superstrate module protects the
pottant from the envirenment and, in certain cases, enhances module cooling, The edge frame is
used to attach the module to an array. Placement of a module in a typical array field is illustrated
in Figure 2-2,

caL

[

ARRAY FIELD »

> *

Figure 2~-2. Module placement in an array field,

The analyses performed during Phase 1 were for a 1.2-meter square module using 10.2 cm
(4-inch) square, 0.254 mm (0.010 inch) thick cells spaced 1.3 mm apart, as shown in Figure 2-3.
Most of the analyses were performed for environments specified in references 7 and 8 (i.c. LSA
module qualification requirements), For example, sizing of the structural support member of a
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Figure 2-~3, Plan view of modula showing cell srangement,

module was determined for a uniform, normal pressure load of 50 psf. This load corresponds to
the pressure difference generated between the front and back surface of a module by a 100 mph
wind, Thermal and optical caleulations were performed for a wind velocity of 1 meter/sec
parallel 1o the ground and for a module tilt (relative to the loeal horizontal) of 37 degrees,

2.2 SCOPE

Originally, Phase 2 was to consist of three distinet segments, as outlined in the Phase 2 Test
Plan [9): (1) verification tests, (2) overstress tests, and (3) qualification tests, The qualification
tests were 1o be performed on full-seale (1.2 meter X 1.2 meter) modules with a full complement
of 121 clectrically-connected photovoltaic cells, Smaller specimens were to be used for the
verification and overstress tests, In June 1981, JPL assumed responsibility for performance of
the qualification tests; hence material on qualification tests is not contained in this report,

2.2.1 Verification Test

The goal of the verification tests was to establish confidence in the analytical design
methodologies developed during Phase | and to modify the analytical models wherever test data
warranted such action. These tests were performed on specimens designed o permit the
experimental measurement of important parameters such as cell temperature, cell stress, stress in
the load-bearing member of a module, and clectrical breakdown voltage. For these tests,
cnvironmental conditions were chosen 10 approximate, as closely as possible, the environmental
conditions analyzed in Phase 1.

Ly
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Five separate and independent tests comprised the verification test segment of the test plan.
These tests were

1, Optical test
2, Electrical isolation test
3. Thermal structural test
4, Structural deflection test
5, Thermal test
Details of each test and data analyses are presented in Sections 3 through 7 of this report.
2.2.2 Overstress Test

Overstress tests are those tests where the test specimens are subjected to an environment in
excess of tiiat for which the encapsulation system was designed. The purpose of these tests was to
precipitate failures in the test specimens that ordinarily would not appear during short-term
qualification tests but might occur during long-time field exposure,

In this program, overstress tests were treated as an extension of the thermal structural and
structural deflection verification tests. In the thermal structural tests, the appropriate specimens
were subjected to environment temperatures below the glass transition temperature of the
pottant. In the structural deflection tests, the appropriate specimens were subjected to an
increasing normal pressure load until catastrophic failure occurred or the load capacity of the test
apparatus was reached,

2.3 TEST CRITERIA

This test program did not require a pass/fail criterion, However, from past experience and in
the light of unknown factors described in Section 7 of reference 3, the following margins apply
when comparing test data with pretest predictions:

Data Item Criteria
Cell Temperature + 10 percent of predicted value
Module Deflection £ 10 percent of predicted value
Stress +25 percent of predicted value
Power Output (Optical, | =25 percent of predicted value
Thermal Tests)

2-4



2.4 RESPONSIBLE ENGINEERING AUTHORITY

Bach test was performed under the direction of a responsible engineering authority (REA),
who was responsible for all pretest preparations (including inputs to the test plan), pretest

prediciions, test monitoring, and post-iest analysis, The REAs were:

Test

REA

| OpticalV '

Electrical Isolation

Structaral Deflection
Thermal Structural

Thermal

J.F. ‘,mtkl'cy (Hughes)

A, Garein (Spectrolab)
C.P. Minning (Hughes)

L.B. Duncan (Hughes)
L.B. Duncan (Hughes)
J.F. Conkley (Hughes)

&8 TEST LOCATIONS

The verification and overstress tests were performed at the following locations:

Test

Location

Optical

Eleetrical Isolagion

Thermal Structural

Structueal Deflection

Thermal

Spectrolab

{Foothill Facility)
12865 Foothill Blvd,
Sylmar, GA 91342

Spectrolab
(Foothill Facility)

Hughes Aireralt Co.
(Rodeo Rd. Facility)

5901 Rodeo Bivd,
Culver Gity, GA 90230

Hughes Aireralt Go.
{Rodeo Rd. Facility)

Hughes Aireraft Co,

Bldg. R2 (Bally Chamber)
2060 E. Imperial Hwy.,
El Segundo, CA 90245




3.0 OPTICAL TEST

3.1 TEST OBJECTIVE

The objective of the optical verification test was to validate the optical analysis methodology
developed during Phase 1 of the program. The verification process consisted of measuring the
electrical power produced by several encapsulated cells and then comparing these measureraents
with the electric power outputs predicted (by the optical model) for these cells,

3.2 TEST SPECIMENS

Thirteen two-cell coupous, as designated in Table 3-1, were used as test specimens in the op-
tical tests, The geometric layouts and dimensions of these specimens are illustrated in Fig-
ure 3-1, The total thickness of each specimen was measured at several locations inside the
perimeter of each cell, and test predictions were based on the average of these measured
thicknesses, The back side of each cell was left bare so that good tiiermal contact could be made
between the cell and the holding fixture. Test coupons OC-6 through OC-~13 were fabricated in
the configurations shown in Figures 3-1f through 3-1m; each cell in these coupons was then cut
out (before testing) to eliminate excess encapsulant around the edges of the cells,

This series of coupons was selected to verify the accuracy of the model as well as the ability of
the model to predict trends (i.e,, changes in cell power output resulting from changes in the
optical parameters of the encapsulation system). These trends can be evaluated by comparing the
electrical outputs measured for each coupon, Such trends include:

1. Relative performance of single crystal silicon and polycrystalline silicon cells
2. Effect of glass iron content for glass superstrate modules
3. Effect of Craneglas in pottant on cell electrical output
4, Effect of stipple-out versus stipple-in configuration for glass superstrate modules
5, Relative performance of Korad and Tedlar as front cover materials for substrate modules
6. Relative performance of texurized and non-texturized cells
7. Effect of AR-coating on electrical output of texturized gells
8. Effect of pottant thickness on cell electrical output Ic\
9. Relative performance of AR-coated and non AR-coated cells.
3.3 TEST SET-UP

Placement of a test coupon in the holding fixture of an illumination source is shown in Fig-
ure 3-2. An actual coupon in the fixture is shown in Figure 3-3. Both tungsten and xenon
illumination sources were used in these tests, and the holding fixtures were slightly different for
these two pieces of equipment.

Nameplate data for the equipment used in this test are found in Appendix A.
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a. Lab setup b. Close up

Figure 3-3. Coupon no. OC - 10 in xenon lumimnation source

3.4 TEST CONDITIONS

| he P HoLests werte ]'tllwllllui at near-ambient ((Illl'('l‘l(llll"l'lll'.llt'll\ Hl« lllll"('l‘lllll(‘\
ol the cooling tixtures ranged between 287 and 297C, and measured cell temperatures ranged
between Y ind 5 (

Uhe radiant energy flux of the illumination sources was set by means of standard photovol

taie cells. The standard cells, as well as the procedure for setting the fluxes, are described in Ap
pendix Ao Radiant energy fluxes were set at 0135 W em® and 0.100 W /em” for the xenon and
tungsten sources respectively. A pyranometer (see item 2, Table A-4, Appendix A) was used 1o

check these flux sewtings. The standard cell and the pyranometer readings were in agreement for
the xenon source, but not for the tungsten source. The pyranometer indicated that the total
radiant energy flux was 0.22 W em® for the tungsten source. These results were expected since
most of the energy in the xenon spectrum falls within the response range of the cells, whereas
most of the energy in the tungsten spectrum does not. Beam uniformity is shown in Figure 3-4
for the xenon source. Information on beam uniformity for the tungst~n source was not available
but the uniformity of this source was thought to e less than that of the xenon source

I'he following parameters were measured for all cells and both illumination sources
. Open-circuit voltage betore encapsulauion
Open-circuit voltage after encapsulation
}. Short-circuit current before encapsulation
o Short-<circunt current alter l'lli.l|‘\lll4lll!'ll
Cell current at 500 mV before encapsulation

0. Cell current at 500 mV afier encapsulation
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Figure 3~4. Uniformity of xenon source beam and outlines of test coupor cells,
3.5 DATA ANALYSIS

3.5.1 Test Data Summary

Measured values of the short circuit current (L), current at 500 mV (L), and open circuit
voltage (V,.) for each cell are listed in Table B-1 of Appendix B. These parameters were
measured in both the tungsten and xenon light sources before and after encapsulation of each cell
in its respective coapon, The ratios of electric current (I, and Isy) measured after encapsulation
divided by electric current measured before encapsulation are also listed in Table B-1, Since the
current ratios form the basis for subsequent discussion of the test data, these ratios are listed in
Table 3-2 as well, The maximum electrical power produced by each cell can be approximated by
multiplying Isp by 0.5 volts.

In all cases, values of V., L., and I5 measured for the xenon source were greater than those
measured for the tungsten source, This result was expected since the xenon source provided more
available energy, at wavelengths coincident with the spectral response (i.e., power conversion
efficiency versus wavelength) of silicon, for conversion to electricity. As shown in Figure 3-5,
approximately 87 percent of the energy from the xenon source is available at wavelengths less
than 1.2 um, Converscly, only 35 percent of the energy from the tungsten source is available at
wavelengths less than 1.2 um,

For coupons OC-1 through OC-8 and OC-11, I, and lyy were generally greater for
cncapsulated cells than for bare (i.e. unencapsulated) cells, These parameters remained essential-
ly unchanged or decreased slightly after encapsulation for AR-coated and/or texturized cells
(0C-9, 10, 12, 13). These results were expected since encapsulation makes bare silicon cells less

3-8
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TABLE 3-2, OPTICAL TEST RESULTS
Xenon Tungsen

Coupon Coupon Descripiion Cell Number | 1 Ratio | Iy Ratio | I, Ratio | Ly Ratio

OC«| Lowsiron glass (stipple in) BC-11 1,21 0.83 1,38 0.9
11 mil EVA BC-15 1.31 1,24 1,47 1.44
single crysial cell .

0C-2 Loweiron glass (stipple in) A 1,22 1.28 1.21 1.24
6 mil EVA AA 1,25 1.40 119 1,27
polycrysialline cell

PC-) High-iron glasy EC-14 . 1.21 1,23 IN|
14 mil EVA BC-9 1.1 114 1,24 1Ll
single erystal cell

OC-4 | Lowsiron glass (stipple in) BC-17 1.32 30 144 142
13 mil EVA/Craneglas BC-18 1,28 1,23 1,44 136
single crystal cell _

0C-5 | Lowsiron glass (stipple out) [ BC-10 1.30 1.28 1,49 1,44
22 mil EVA/Craneglas B8C-13 1.3 129 1.46 1.44
sinele crysial cell

0C-6 Rorad Je16 1,25 1.23 L21 1.21
18 mil EVA B.7 1,10 1.27 1.07 1,63
single crystal cell

OC""l Tcdlﬂr - lnzz » L35 »
18 mil EVA -} 1,22 1 1,36 1.3
single cryital cell

OC-8 Tedlar 17 1,22 33 1.42 1,39
19 mil EVA/Craneglas I1-6 1,23 1,21 1,41 40
single crystal cell

0C-9 Tedlar B-5 1.00 0.98 1.0 0.96
18 mil EVA/Craneglas B-14 0.99 1,01 1.0 0.98
single crysial cell (AR-coated)

0C~10 | Tedlar No, 15 1,05 1.03 1.05 1,05
18 mil EVA/Craneglas No, 16 1,05 1.02 1.04 1.02
single crystal cell (texturized) ;

OC-11 Tedlar I-4 1,25 1.24 1,43 1,45
55 mil EVA 1-12 1,22 1.2 1.42 1.47
single crywal cell

0C-12 | 'Tedlar B-18 0.93 091 0.97 0.92
17 mil EVA B-192 0.95 ae3 0.98 093
single crystal cell (AR-coated)

0OC-13 | Tedlar No. 23 0.98 097 0,98 0.92
21 mii EVA/Craneglas No. 24 0.99 0.94 0,99 089
single crystal cell (AR-coated,
texturized)

Notes:

1. Bye ™ shortecircuit currens, ma

2. lsgg = cell current at 500 mv, ma

3. Current ratios refer to current measured after encapsulation divided by current measured before encapsulation,

3-9
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reflective, thus peimitting more of the incident radiant energy to be converted to electricity. Since
the AR-coated and texturized cells reflect little of the incident radiant energy, encapsulation of
these cells has little or a slightly detrimental effect (due to absorption of the incident radiation in
the encapsulation layers) on cell electrical output. Cell BC-11 of coupon OC-1 was cracked
during measurement of the current at 509 mV, which resulted in low values of s for both light

sources,

3.5.2 Description of Analytical Model

The three layer model developed in Section 5.3.2 of reference 3 is used as the basis for
correlating analysis with test data, This model, shown in Figure 3-6, is an idealized representa-
tion of radiant energy propagation through the front cover and pottant layers on the sun side of a
photovoltaic cell. In addition to determining the maximum electric power generated by the cell,
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this model is also used to determine the radiant energy absorbed as heat in the cell and the layers
of the encapsulation system. The radiant energy flux incident on a surface is indicated by a
superscript mirus (—) and the radiant energy flux leaving a surface is indicated by a superscript
plus (+). Details for calculation of these fluxes are found in reference 3. The relations between
the fluxes and the total radiant energy absorbed by the cell (q.) and the radiant energy absorbed
as heat in the layers of the encapsulation system (q, and q;) are shown in Figure 3-6, At present,
this moedel does not calculate electric current and voltage,
The major parameters in this model are

1, Front cover absorption coefficient, a

2. Pottant absorption coefficient, a,

3, Front cover index of refraction, n,

4, Pottant index of refraction, ng

5. Cell index of refraction, n,

6. Reflectivity at interface between cell and pottant, p,

7. Reflectivity at interface between pottant and {ront cover, pq
8. Reflectivity at interface between air and front cover, p;
9. Front cover thickness, t,
10. Pottant thickness, ty
11, Spectral power conversion efficiency of the cell, Cy

Items 1 and 2 are wavelength dependent, Items 6, 7, and 8 are wavelength dependent if anti-
reflection (AR) coatings are present on either the cell, the front cover, or both the cell and front
cover. The Fresnel equation (e~ 5-10, reference 3) for normal incidence was used to calculate
the reflectivities of non AR-coated and non-texturized surfaces. Equation (5-22) of this refer-
ence® was used to caiculate the reflectivities of encapsulated, texturized silicon cells (p = 0.0096)
and stippled glass (p = 0.05 facing in, p = 0,048 facing out), The reflectivities of AR-coated
cells were calculated by means of egs. (5-11, 12 and 13) of reference 3. For this test, all AR-coat-
ings were assumed to be SiO (index of refraction = 1,95) and optimized for an air/silicon
interface with a minimum :>flectivity at 0.6 um.

The other required informe.tion for the model includes the spectrum of the illumination
source and the spectral power-conversion efficiency of the cell, The spectra of the xenon and
tungsten sources are shown in Figure 3-5. The spectral power conversion efficiency of the cell,
C), is not an easily measured parameter, and values of this parameter could not be found in the
literature. However, curves of short-circuit current versus wavelength were readily available.
These curve~ are determined for an incident radiant energy flux that is mvanant with wave-
length, and the results are reported in units of milliamps per milliwatt per cm? of incident radiant
energy [6,12]. Relative response curves (i.e. the short circuit current measured at wavelength A
divided by the maximun: value of the short-circuit current for all A) of typical single crystal and
polycrystalline silicon cells are shown in Figure 3-7.

A typlcal currant versus voltage curve for a single-crystal silicon cell is shown in Figu:e 3-8.
The maximum electric power generated by these cells occurs at approximately 0.5 volts, The
curves of I,. versus A and sy versus A are assumed to be identical. Since the maximum power is
given approximately by Pp,, & 0.5 Is, the relative response curve can presumably be used in
place of the spectral power conversion efficiency.

* Note that this expression should read as pp = 0,05 + 0.95 p°
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3.5.3 Caiculation Details

The basic approach used in the optical model is to divide the illumination spectrum into a
number of equal-energy intervals, Twenty equal-energy intervals were used in this correlation
analysis; corresponding to these energy intervals are twenty wavelength bands of unequal size,
The electric power generated by the cell is determined by means of the following relation

P=A, Z Cqu (3'1)

where:
A, = area of cell, cm?
Cy = power conversion efficiency for energy interval i
qi = radiant energy flux in interval i absorbed by cell, watt/cm®

The power conversion efficiency, Cy;, is evaluated at the midpoint of each wavelength band.
Values of qy, gz, and q. are calculated for each energy interval, '

Power conversion efficiencies varied somewhat between cells used in the test. To account for
these variations, the maximum value of the spectral power conversion efficiency for an unencap-
sulated cell used in the test was adjusted in the following manner:

mel - Gnn' .EL (3"2)
t
‘where:
Cuarr ™ maximum value of spectral power conversion efficiency for cell to be tested
Cumar' ™ maximum value of spectral power conversion efficiency for typical cell
7, ™ overall power conversion efficiency of actual cell
n, = overall power conversion efficiency of typical cell
Here, n is defined as

P
n = -[‘a-: (3-3)

Values of Cg,,' and 7, used in this analysis are listed in Table 3-3, The power conversion

efficiency at any wavelength is then found by multiplying C,,," by the relative response shown in
Figure 3-7.

TABLE 3-3. VALUES OF C_,,' AND 7, FOR
“TYPICAL'' SINGLE CRYSTAL AND POLY-
CRYSTALLINE SILICON CELLS

Cell Type Conas' m
Single crystal 0.395 0.0831
Polycrystalline 0.183 0.06

3-14



The overall power conversion efficiency of an actual cell, n,, was determined by means of the
following relation for non-texturized and non AR-coated cells

0.5 Isoo
(1= p) Acqi”

= (3-4)

where;

Iso ™ cell current mcasured at 0.5 volts, amps
p. = reflectivity of cell surface
qi”~ = incident radiant energy flux on cell surface, watt/cm?

Since the reflectivity of AR-coated surfaces is wavelength dependent, the following modified form
of Equation (3-4) was used to calculate 7, for coupons OC-9, 12, and 13:

- 0.5 Ligo (3-5)
A. .En (1= pa)as

where p; and qy;” correspond to the reflectivity evaluated at the midpoint of wavelength band i
and the incident radiant energy in that band rcspectxvcly

The active areas of e cells were 24 9 cm? for the 2.1-inch square cells, 46.5 cm’ for the
two-inch X four-inch cells, and 18.8 cm? for the two-inch diameter cells. These areas allow for
cell surface blockage by the black tape and metallization.

Values of p. and relative cell efficiency (=C)/Cp,,) are listed in Tables 3-4 and 3-5 for
unencapsulated and encapsulated cells, respectively. This information is tabulated for each of the
equal energy intervals for the xenon and tungsten sources. Values of n, for each cell used in the
test are listed in Table 3-6.

One prediction was made for each coupon to minimize computer time and labor. Average
cover layer and pottant thicknesses used in these calculations are listed in Table 3-7. The power

efficiencies used in the calculations corresponded to the average power efficiencies of the cell
pairs used in each coupon.

3.5.4 Resuits

h™

The measured and predicted electric power produced by the encapsulated cells are compared
in Tables 3-8 and 3-9. Also included are measured and predicted ratios of cell output power
after encapsulation to cell output power measured before encapsulation. The average electric
power for the two cells of each coupon and the predicted electric power based on average
properties (i.e. cell efficiency and encapsulation layer thicknesses) for each coupon are tabulated.
These results are shown for both illumination sources.

In all cases, the average electric power predicted by the model was less than the average
measured power. Agreement was best for the xenon source; the average discrepancy (as
percentage of the measured value) was —7.4 percent for xenon and —13.1 percent for tungsten,
The absolute values of the discrepancy ranged from —2.2 to —15.1 percent for xenon and from
—1.2 to —24.3 percent for tungsten. Agreement between measured and predicted powe: output
was best for AR-coated and texturized cells; this agreement was best for the tungsten source.

3-15
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TABLE 3-6.
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POWER CONVERSION EFFICIENCY (n,) OF BARE CELLS
BEFORE INCORPORATION IN TEST COUPONS

Xenon Light Source 'i;unglten Light Source

Coupon | Cell No. | Iqo A | Power, W | 1, Lo A | Fower, Wil n
OC-1 | BC-11 0.561 0.280 0.125 | 0.450 0.225 0.063
BC-15 0.577 0.288 0.128 { 0.454 0.227 0.063
0C-2 |A 0.506 0.253 0.060 | 0.367 0.184 0.027
AA 0.464 0.232 0.055 | 0.345 0.172 0.025
0OC-3 | BC-14 0.536 0.268 0.120 { 0.469 0.234 0.065
BC-9 0.577 0.288 0.128 | 0.466 0.233 0.065
0OC-4 | BC-17 0.577 0.288 0.128 | 0472 0.236 £.066
BC-18 0.536 0.268 0,120 | 0.431 0.216 0.060
0OC-5 [ BC-10 0.574 0.287 0.128 | 0,460 0.230 0,064
BC-13 0.564 0.282 0,126 | 0.464 0.232 0.065
0C-6 |I-16 0.550 0.275 0.123 | 0,502 0.251 0.070
B-7 0.603 0.302 0.135 | 0.577 0.288 0.080
0oC-7 | 1-17 0.552 0.276 0.123 | 0,440 0.220 0,061
I-18 0.553 0.277 0.124 | 0.435 0.218 0.059
oC-8 |1-7 0.508 0.254 0.113 | 0.446 0.223 0,062
I-6 0.556 0.278 0.124 | 0.435 0.218 0.061
0C-9 | B-5 0.762 0.381 0.124 | 0.692 0.346 0.073
B-14 0,780 0.390 0.127 0,705 0.352 0.074
0OC-10 | No. 15 0.578 0.289 0.125 0.511 0.256 0.068
No. 16 0.569 0.285 0.123 | 0.503 0.252 0.067
OC-11 | I-4 0.511 0.256 0.114 | 0.411 0.206 0.056
I-12 0,542 0.271 0,121 0.423 0.212 0.058
0OC-12 | B-18 0.786 0.393 0.128 0.710 0.355 0.075
B-19 0.770 0.385 0.126 0.694 0.347 0.073
0OC-13 | No. 23 0.570 0.285 0.119 0.505 0.252 0,066
No. 24 0.609 0.305 0.128 0.550 0.275 0,071
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TABLE 3-7, AVERAGE COVER LAYER AND
POTTANT THICKNESSES

Coupon | Cover Layer Thickness, inch | Pottant Thickness, inch
oC-1 0.138 0,011
0C-2 0,131 0,006
0oC-3 0.119 0.014
0C-4 0.128 0.013
0C-5 0.127 0.022
0C-6 0.003 0.018
0C-7 0.004 0,018
OC-8 0.004 0.019
0C-9 0.004 0.018
OC-~10 0.004 0.018
OC-11 0.004 0,055
0C-12 0.004 0.017
0C-13 0.004 0.021
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TABLE 3-8,

.. . 3.
W ¥ . ;l“ .

OUTPUT FOR XENON ILLUMINATION SOURCE

COMPARISON OF MEASURED AND PREDICTED ELECTRIC POWER

Coupon

Coupon Description

Average Power (Messured)®

Aversge Pmy’(&knhud)

Unencapsulated, W | Eacapsulated, W

Ratio®®

Encapeulated, W

Rutio!

0C-1

Low-iron glass (stipple in)
i1 mil EVA
single crystal cell

0.288
{cell BC-15 only

0,358
) | (cell BC~15 only)

1.24

0.328

1,14

Low-iron glass (stipple in)
6 mil EVA
polycrysalline cell

0.242

0325

,13‘

0,276

1.14

High-iron glass
14 mil EVA
single crystal cell

0.278

0,326

147

013

1.08

0C-4

Low-iron glass (siipple in)
13 mil EVA/Craneglas
single crystal cell

0.278

0,352

1,27

0312

1.12

0C-5

Low-iron glass {stipple out)
22 mil EVA/Craneglas
single crystal cell

0,284

0,366

1,29

0314

L1

Korad
18 mil EVA
single crystal cell

0.288

0.360

1,25

0.311

1.08

OC-7

Tedlar
18 mil EVA
single crystal cell

0276

0.324

1.17

0,3(#

1,12

0C-8

Tedlar
19 mil EVA/Craneglas
single crysial cell

0.266

0.3y

1.27

0.293

1,10

0oC-9

Tedlar
18 mil EVA/Craneglas
single crystal cell (AR-coated)

0.386

0,383

0,99

0.365

0.95

0C-10

Tedlar
18 mil EVA/Craneglas
single crystal cell (iexturized)

0287

0,294

1,02

0273

0.95

0OC-11

Tedlar
55 mil EVA
single crystal cell

0.264

0,335

1.27

0.305

116

0C-12

Tedlar
17 mil EVA
single crystal cell (AR-coated)

0.389

0.358

0.92

0.350

0,90

0C-13

Tedlar

21 mil EVA/Craneglas
single crystal cell (AR-coated,
texturized)

0.295

0.281

0.95

0.260

0.88

*Average for two cells of each coupon
**Ratio ™ power measured after encapaulation divided by power measured before encapsulation
TRatio = power predicted for cell after encapsulation divided by power measured before encapsulation
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TABLE 3-9, COMPARISON OF MEASURED AND PREDICTED ELECTRIC POWER
OUTPUT FOR TUNGSTEN ILLUMINATION SOURCE
Average Power (Mensured)® Average Power (Calculsted)
Coupon |  Coupon Description | Unencapsulated, W | Encapsulated, W | Ratio®® | Escapsulated, W | Ratio¥
OC-1 | Lowsiron glass (sipple in)
11 mil EVA 0,227 0.326 1,44 0,257 113
single crystal cell feell BC«15 only) | (cell BC-15 only)
OC-2 | Low-iron glass (stipple in)
6 mil EVA 0.179 0,224 1,25 0.202 1,13
polycrysalline cell
0C-3 | Highelron glass
14 mil EVA 0234 0,268 1,14 0,235 1.00
single crysta) cell
OC-4 | Low-iron glass (stipple in)
13 mil EVA/Craneglas 0,226 0,314 1.39 0,255 1,13
single crystal cell
OC-5 | Lowsiron glass (stipple out)
22 mil EVA/Craneglas 0.231 0,333 1,44 0,252 1.09
single crystal ceil
OC-6 | Korad
18 mil EVA 0,270 0.300 1,11 0,285 1.06
single crystal cell
0C-7 | Tedlar
18 mil EVA 0,219 0.302 1,38 0,245 112
single ¢rystal cell
0OC-8 | Tedlar
19 mil EVA/Craneglas 0,221 0,308 1,39 0.243 1,10
single crystal cell
0OC-9 | Tedlar
18 mil EVA/Craneglas 0,350 0,339 0,97 0,343 0.98
single crystal cell (AR-coated)
0C-10 | Tedlar
18 mil EVA/Craneglas 0,254 0,262 1.03 0,245 0,96
single crystal cell (texturized)
OC-11 | Tedlar
55 mil EVA 0,217 0,315 1.45 0,241 1.1
single crystal cell
0C-12 | Tedlar
17 mil EVA 0,351 0.325 0.93 0.329 0.94
single crystal cell (AR-coated)
0OC-13 | Tedlar
21 mil EVA/Craneglas 0,264 0.239 0,90 0.225 0.85
single crystal cell (AR-coated,
texturized)

*Average for wwo cells of each coupon

**Ratio = pawer measured alter encapsulation divided by power

ed before ¢ Jath

P

tRatio = power predicted for cell after encapsulation divided by power measured before encapsulation
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Since the beams of both illumination sources were not perfectly collimated, it ‘was suspected
that radiant energy reflected off those parts of the encapsulation system not covering the cell
might give rise to a “light-concentrating” efiect (i.e, the zero-depth concentrator phenomenon)
and thus be a source of discrepancy between measured and predicted cell output power, To test
this hypothesis, cardboard frames were cut such that only the cell of a coupon was illuminated.
Is00 was measured with and without the frame for each source. The current measured with the
frame divided by the current measured without the frame is called the framing factor, Multiply-
ing the average measured power in ‘Tables 3-8 and 3-9 by the appropriate framing factors yields
somewhat better agreement between predicted and measured cell power; these results are shown
in Tables 310 and 3-11, These results indicate that “light concentration” within the encapsula-
tion system was responsible for a no more than 2 percent increase in measured power output.

TABLE 3-10, COMPARISON OF MEASURED (WITH FRAME) AND PREDICTED
ELECTRIC POWER OUTPUT FOR XENON ILLUMINATION SOURCE

Average Power, Waits
Measured Calculated
Coupon Coupon Description Framing Factor | Without Frame | With Frame

OC-1 | Low-iron glass (stipple In)
11 mil EVA 0,985 0358 0.353 0.328
single crystal cell

OC-} | High-iron glass
i4 mil EVA 0.988 0.326 0,322 0.3
single crystal cell

C(\C~4 i Low-iron glass (stipple in)
13 mil EVA/Craneglas 0.97 0.352 0.341 0.312
single crystal cell

OC-5 | Low-iron glass (stipple out)
22 mil EVA/Craneglas 0,98 0.366 0,359 0314
single crystal cell

0OC-6 | Korad
18 mil EVA 1.0 0,360 0,360 0311
single crystal cell

OC-8 | Tedlar
19 mil EVA 0.996 0,337 0.336 0.293
single crystal cell

OC-10 | Tedlar
18 mil EVA/Craneglas 0,995 0,294 0.293 0.273
single crystal cell (texturized)

OC-~11 | Tedlar
55 mil EVA 097 0,335 0.325 0.305
single crystal cell (AR-coated)

OC-12 | Tedlar
17 mil EVA 0997 0.358 0.357 0,350
single crystal cell (AR-coated)

OC-13 | Tedlar
21 mil EVA/Craneglas 0.989 0.281 0.278 0.260
single crystal cell (AR-coated,
texturized)
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TABLE 3-11, COMPARISON OF MEASURED (WITH FRAME) AND PREDICTED

ELECTRIC POWER OUTPUT FOR TUNGSTEN ILLUMINATION S8OURCE

Coupon Description

Framing Factor

Average Power, Watls

Measured

Calculated

Without Frame | With Frame

0C-1

Lowsiron glass (stipple in)
11 mil EVA
single crystal cell

0.986

0.326

0.321

0.257

0C-3

Highe«iron glass
I4 mil EVA
single crystal cell

0.991

0.268

0.266

0.23%

0C-4

Low-iron glass (stipple in)
13 mil EVA/Craneglas
single crystal cell

0,982

0314

0,308

0.255

0C-5

Low-jron glass (stipple owt)
22 mil EVA/Craneglas
single crysial cell

0.976

0.333

0.325

0.252

0C-6

Korad
18 mil EVA

1.0

0.300

0.300

0,285

0C-8

single crysal cell

Tedlar
19 mil EVA
single crystal cell

0.988

0.308

0.304

00243

0C-10

Tedlar
18 mil EVA/Craneglas
single crystal cell (texturized)

0,997

0.262

0,261

0.245

oC-11

Tedlar
55 mil EVA
single crystal cell (AR-coated)

0.983

0.315

0.310

0.241

0C-12

Tedlar
17 mil EVA
single crystal cell (AR-coated)

0.997

0.325

0.324

0,329

0OC-13

Tedlar

21 mil EVA/Craneglas
single crystal cell (AR-coated,
texturized)

0.824

0.239

0.197

0.225

3.6 DISCUSSION

The results in Tables 3-8 and 3-9 clearly show that the optical model underpredicts the
output power from encapsulated cells. The fact that agreement between test and prcdnctmn is
best for AR-coated and texturized cells coupled with the fact that etched cells were used in the
coupons indicates that use of the Fresnel equation yielded too high a value for the reflectivity of
the cell surfaces. Use of a lower value of reflectivity in the optical model would yield substantially

better agreement between measured and predicted cell output power.
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Other possible contributing factors to the discrepancy between prediction and measurement
are non-uniform flux in illumination sources and non-unifisp;a. pottant thickness above the cells,
The importance oi these factors was not determined,

Part of the discrepancy for the tungsten source can be found in the calculation method. Use of
equal-energy intervals gives rise to poor resolution of the cell response for this source, A larger
number of intervals would overcomne this problem,

Since the efficiencies of the cells varied so much between coupons, it is best to use the power
ratios listed in Tables 3-8 and 3-9 to discern trends. A comparison between ratios for coupons
OC-1 and OC-4 indicates that the presence or absence of Craneglas in the pottant has little
influence on cell povrer output, A comparison of ratios for coupons OC-4 and OC-5 shows that
outward-facing or inward-facing stippling of low-iron glass superstrates has little influence on
cell power output. The negative effects of iron-content in glass superstrates can be seen by
comparing ratios for coupons OC-1 and OC-3, A comparison of ratios for coupons OC-7 and
OC-11 shows that a three-fold increase in pottant thickness yields only a slight change in cell
power output,

In summary, the test results have demonstrated the utility of the optical model to predict cell
power output for a broad spectrum of optical parameters characteristic of encapsulation systems,
The model consistently underpredicts cell output power, but this problem can be rectifizd by
using more precisely known values of optical properties, such as reflectivity at the cell surface.
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4.0 ELECTRICAL ISOLATION TEST

41 TEST OBJECTIVE

A major design requirement for any photovoltaic module is that the encapsulation system be
able to withstand at least 3000 volts DC before electrical breakdown. Thus, the objective of the
electrical verification test was to assess the validity of the electrical isolation model used to
determine material thicknesses of the encapsulation system to satisfy this requirement, To
accomplish this objective, the breakdown voliage was measured for specially-designed coupons
that employed simulated solar cells and different encapsulation schemes, Specific items to be
investigated were

1, Effect of Craneglas on breakdown voltage

2, Effect of pottant thickness on breakdown voltage

3. Electrical isolation capability of wood substrates,
4.2 TEST SPECIMENS

Four types of coupons (listed in Table 4~1) were used as test specimens. The geomietric
layouts and dimensions of the different coupon types are illustrated in Figure 4-1. Approxi-
mately 25 of each coupon type were tested te electrical breakdown (failure) of the encapsulation
system, This quantity was deemed sufficient to permit a preliminary statistical analysis of the
results,

TABLE 4-1. SPECIMENS FOR ELECTRICAL ISOLATION VERIFICATION TESTS

SR et E S P

Type Front Side Back Side

A 0,004 in. Tedlar, 0,018 in. EVA 0.018 in. EVA/CG, 0.001 in. Alum, Polyester
B 0.001 in. Tedlar, 0.018 in, EVA 0.036 in. EVA/CG, 0.001 in. Alum. Polyester
C 0,001 in. Tedlar, 0.018 in, EVA 0.018 in, EVA/CG, 0,125 in. Wood Product
D 0.001 in, Tedlar, 0,036 in. EVA/CG | 0.036 in. EVA/CG, 0.125 in. Wood Product

Wood Product ™ Duron (U.S. Gypsum Co.)

EVA = Ethylene Vinyl Acetate

EVA/CG = Ethylene Vinyl Acetate with Craneglas

Alum, Polyester = Aluminized Polyester
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Figure 4-1. Electrical isolation test coupons; dimensions in inches.
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4.3 TEST SET-UP OF POG QurelTyY

A hipot tester was used to determine the breakdown voltage of the encapsulation system on
both the front and back sides of each specimen, The test set-up is illustrated in Figure 4-2, Test
coupons were placed on the 3 X 3 X 1/2 inch aluminum block so that the block was centered
over the copper electrode (i.e. the simulated solar cell), The edges of the aluminum block were
rounded, which, combined with the central placement of the block over the copper electrode,
served to minimize edge effects, The aluminum block was connected to ground, and an electrical
potential was applied to the copper electrode (via the copper contact) by means of the hipot tester,

ll / SAMPLE

OUTLINE OF COPPER
ELECTRODE

OUTLINE OF
" ALUMINUM BLOGK

INSULATION
+

WEIGHT
(3 Les)

ALUMINUM BLOCK
0,8

r /iNIULATION

Figure 4-2, Test set-up for electrical isolation tests; dimensions in inches,

4.4 TEST CONDITIONS

The test coupons were conditioned at 72°F and 50 percent relative humidity for a minimum
of 24 hours before test, The coupons were placed in the apparatus shown in Figure 4-2 and
tested to failure immediately upon removal from the controlled temperature and humidity
environment, Two tests were performed on each coupon (one for each side),

During a test, the applied voltage was increased in 500-volt increments from zero volts to
breakdown, The leakage current was measured at each voltage setting. A leakage current in
excess of 5 mA was taken as the criterion for electrical breakdown of the encapsulation system,

4-3



GRIGHIA, B
OF POOR QUALITY

4.5 DATA ANALYSIS

4.5.1 Test Data Summary :

Results of the electrical isolation test are listed in Tables B-3 through B-6 of Appendix B,
For purposes of analysis, the key results (maximum breakdown voltage, minimum breakdown
voltage, and average breakdown voltage for cach coupon type) are listed in Table 4-2,

TABLE 4-2, SUMMARY OF ELECTRICAL ISOLATION TEST DATA

Breakdown Voltage, kV
Coupon
Type Side Maximum | Minimum | Average
A Front 19 10 15.6
Back 11 1 6.8
B Front 19 12 15.2
Back 13 5 8.6
Cc Front 21 5 13.2
Back 25 8 22.3
D Front (with Craneglas) 25 12 18.1
Front (without Craneglas) 23 10 15.8
Back 25 22 24

The LSA electrical isolation requirement of =3000 volts DC was met in nearly every case.
Only four of coupon type A (back side) failed to meet this requirement, Voltage breakdown did
not occur in the kiack side of four type C coupons, in the front side of one type D coupon, and in
the back side of ten type D coupons,

On the average, the breakdown voltages for the test specimens were in excess of 6000 volts.
This result was expected, as explained below.

4.5.2 Correlation with Analytical Model

The series capacitance model (see refereace 3, Section 4.2.2) is used as the basis of correlating
analysis with test data. This model is illustrated in Figure 4-3 for each of the test specimens. For
ease of discussion, EVA and EVA containing Craneglas will be referred to as the pottant;
Tedlar, wood product, and aluminized polyester film will be referred to as covers.

When an electrical potential difference is applied across the encapsulation system, electric
fields are generated within the pottant and cover layers. As the applied voltage is increased, these
electri; fields increase until the electric field in one of the layers exceeds the dielectric strength of
the material. At this point, the layer breaks down electrically (in effect, becoming a conductor),
and the entire potential difference (voltage) is thus imposed across the second layer. This sudden
increase in voltage leads to a sharp increase in the electric field in the second layer. If the
dielectric strength of the second layer is exceeded, complete breakdown of the encapsulation
system occurs. If the dielectric strength of the second layer is not exceeded, the external voltage
must be increased further to cause breakdown.
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The series capacitance model is a simple one-dimensional idealization of the encapsulation
system in which the internal electric field is assumed to be uniform in each layer, For the cover
and pottant layers, this model yields the following relations for the corresponding electric fields:

te + ( Ye )t, v

« ™ clectric field in the cover layer, volt/mil

electric field in the pottant layer, volt/mil

electrical potential across encapsulation system, volt
= cover layer thickness, mil

tp ™ pottant thickness, mil
= pottant dielectric constant

e
[ I |

Y. ™ cover layer dielectric constant

Values of dielectric constant and dielectric strength are listed in Table 4-3 for the materials
used in the test coupons. The properties of EVA and EVA/Craneglas are assumed to be
identical. These properties were obtained from several literature sources, and the environmental
conditions (i.e. temperature and humidity among others) varied from source to source. Hence, the
best that can be predicted is a maximum and a minimum breakdown voltage for the two sides of
each coupon type.

TABLE 4-3. ELECTRICAL PROPERTIES FOR EVA,
TEDLAR, AND WOOD

Dielectric Strength,
Material Dielectric Constant volt/mil
EVA 2.7-3.2 620
Tedlar 7.4-9.9 1700-3500
Wood Product 2.1 175

For ease of discussion, the simplest situations (coupon A back side and coupon B back side)
will be dealt with first. In these cases, the 0.0005 inch thick layer of polyester is assumed to con-
tribute nothing to the electrical isolation capability of the encapsulation system. Therefore, the

entire potential difference is presumably imposed across the pottant (EVA). Here, the maximum
potential difference that can be withstood by the pottant is

Vo = Sptp (4-3)



where §, is the dielectric strength of the pottant, The corresponding values of V, at breakdown
are then found to be:

V, ™ 620 X (8 = 11,160 volt (Type A, back side)
Vo ™ 620 X 36 = 22,320 volt (Type B, back side)

Analysis of the back sides of coupons C and D is somewhat more involved. Here, the values
of ¥/, vary from a minimum of 1,286 (= 2.7/2.1) to a maximum of 1,523 (= 3,2/2.1). In
both coupon types, the maximum potential difference that can be withstood by the wood is 21875
volt (= 175 X 125), The maximum potential differences that can be withstood by the EVA in
coupons C and D are 11160 volts (= 620 X 18) and 22320 volts (= 620 X 36), respectively.

The predicted, maximum breakdown voliage is found by substituting v,/v. = 1,286,
tp = 18, and t = 125 into equations 4-1 and 4-2 to yield

i Vt\ - vﬂ
1,286 X 125 + 18 178.8

v, _V
125 + (18/1.286) 139

£y = (4-4)

E. =

(4-5)

for coupon type C. Now breakdown in a material occurs when the electric field in that material
exceeds the dielectric strength, Substitution of §, = 620 volt/mil for E, and S, = 175 volt,/mil
for E. into the above equations then yiclds two relations to evaluate the value of V, at which
breakdown begins, It is clear that when V= 24325 volt, the wood breaks down electrically and
this voltage is then imposed across the EVA. Since this potential is greater than the maximum
that can be withstood by the EVA (an 18-mil layer of EVA can withstand 11,160 voits), the
entire encapsulation system fails electrically. The predicted, minimum breakdown voltage is
found in a similar manner by substituting y,/y. = 1.523 into Equations (4-1) and (4-2)

Ve

By = a7 (4-6)
; V, |
B ™ 1368 (=7)

For this case, wood fails electrically when V, 2 23943 volts; this potential cannot be withstood
by the EVA, and therefore the entire encapsulation system fails clectrically, Thus, the maximum
and minimum predicted breakdown voltages for the back side of a type C coupon are 24325 volts
and 23943 volts, respectively. Using a similar line of reasoning, the predicied maximum and
minimum breakdown voltages for the back side of a type D coupon are 26775 volts and 26008
volts, respectively,

The front sides of the coupons are the most complex situations to analyze because of the wide
range in properties for Tedlar and EVA. Here, values of v,/7, range from 0.273 (= 2.7/9.9) to
0.432 (™ 3.2/7.4). The minimum and maximum potential differences that can be withstood by a
0.001-inch thick layer of Tedlar (coupon types B, G, and D) are 1700 volis and 3300 volts,
respectively; for a 0.004-inch thick layer these minimum and maximum values increase to 6800
volts and 14000 volts, respectively,

47

B L O A T



For coupon type A, the minimum value of V, at which the pottant breaks down is found by
substituting the minimum value of v,/v, ( = 0.273) into Equations (4-1) and (4-2)

E, = —o- (4-8)
E = —— (4"‘9)

Setting E, = S, = 620 in Equation (4-8), the minimum value of V, at which breakdown occurs
in the ponant ls 11,837 volts, The value of E, in the Tedlar cover just before the onset of
breakdown in the pottant is found by subsmuuon of V, determined from Equation (4-8) into
Equation (4-9); this value of E_is 169 volt/mil, which is well below the minimum dielectric
strength for Tedlar. However, once breakdown occurs in the pottant, the entire 11837-volt
potential difference is imposed across the Tedlar and the corresponding value of E, is found by
substituting V, = 11837 into Equation (4-9) to yield E, = 2959 volt/mil, which is above the
minimum breakdown voltage for Tedlar, Therefore, the predicted minimum value of V, at which
breakdown is expected to occur in the front side of coupon type A is 11837 volts.

The maximum value of V, which the encapsulation system is expected to withstand is found
by substituting the maximum value of v,y (= 0.432) into Equations (4-1) and (4-2) to give

Vv,
E; -1-(-)-:’- (4-10)
E, = "YT (4-11)

Setting E;, = S, = 620 in Equation (4-10) yields V,, = 12231 volt: this is the applied voltage at
which breakdown is predicted to occur in the pottant for v,/y. = 0.432. Substitution of this
value of V, into Equation (4-11) yields E, = 3058 volt/mil, whlch is less than the maximum di-
electric strength of Tedlar, ’I’hcrcforc, it is possible that breakdown can occur in the pottant
while the encapsulation system remains electr :vally intact because the entire voltage can be
withstood by the Tedlar, As mentioned previously, V, must exceed 14000 volts before the
0.001~inch thick Tedlar cover will fail electrically. Thus, the front side encapsulation system of
coupon type A can withstand a maximum potentiai difference of 14000 volts,

A similar line of reasoning is used to evaluate the minimum and maximum values of V, for
the front side of coupon types B, C, and D. The predicted and measured values of V, at
breakdown are compared ir Table 4-4,
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TABLE 4-4, COMPAR!SON OF PREDICTED AND MEASURED
VALUES OF V, AT BREAKDOWN

V, at Breakdown, kV
Measured | Predicted
Coupon Type | Side Description Max | Min | Max | Min
A Front | 4 mil Tedlar, 18 mil EVA/CG* 19 10 | 14 11.8
Back | 18 mil EVA/CG, 1 mil Al Polyester® | 11 1| 1212
B Front | 1 mil Tedlar, 18 mil EVA/CG 19 12 | 114 | 113
Back | 36 mil EVA/CG, 1 mil Al Polyester 13 5 | 223 | 223
C Front | 1 mil Tedlar, 18 mil EVA 21 5 | 11,4 | 113
Back | 18 mil EVA/CG, 125 mil wood 25 8 | 243 | 239
D1 Front | 1 mil Tedlar, 36 mil EVA/CG 25 12 | 22.6 | 225
Back | 36 mil EVA/CG, 125 mil wood 25 21 | 26,8 | 26,0
D2 Front | 1 mil Tedlar, 36 mil EVA 23 10 | 22,6 | 22,5
Back | 36 mil EVA/CG, 125 mil wood 25 22 | 268 | 260
* EVA/CG = EVA with Craneglas
Al Polyester = Aluminized Polyester

4.6 DISCUSSION

The range of predicted and measured values of V, for each coupon is plotted in Figures 4-4
and 4-5. As shown in these figures, all coupons except four samples of coupon A backside passed
the LSA 3000 volt breakdown requirement.

The ranges of measured breakdown voltages were far greater than those predicted by
substitution of material properties with known uncertainties in their values into the series
capacitance model. The predicted breakdown voltage for the backsides of the four coupon types
all fell in the high end of the range of measured breakdown voltages or outside the range
altogether, In general, the predictions fell within the range of measured breakdown voltages. For
those cases where the predictions fell outside the the ranges of the test results, only the
predictions for the backside of coupon type B were substantially (i.e. more than 2000 volts)
outside the ranges of the test results,

Predictions for encapsulation schemes with thin (i.e. 18 mils) pottant layers fell in the middle
to low end of the ranges of measured breakdown voltage. The two exceptions to this observation
are the backside of coupon type A and the backside of coupon type C. There is no readily
apparent explanation for the backside of coupon type A. On the other hand, wood is part of the
encapsulation scheme on the backside of coupon type C, and all encapsulation schemes with
wood have predicted breakdown voltages either slightly above or in the high end of the ranges of
measured breakdown voltages.

A comparison of the test results for the front sides of coupon types A and B indicates that, for
an 18 mil layer of EVA, the thickness of the front cover does not significantly influence the
breakdown voltage of the encapsulation system, For both cases, the model predicted breakdown
voltages in the low end of the ranges of test results and also predicted a slight decrease in
breakdown voltage as the front cover thickness was decreased.

4-9
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Comparing the measured breakdown voltages for the frontsides of coupon types C and D,
and the backsides of coupons A, B, C, and D indicates that doubling the pottant thickness does
not double the measured breakdown voltage. The maximum measured breakdown voltage did
not seem to be strongly dependent upon pottant thickness, but the minimum measured break-
down voltage did increase somewhat with increased pottant thickness. Thus, it appears that the
model overpredicts the change in breakdown voltage with changes in pottant thickness. Since the
diclectric strength of a material is inversely proportional to the square root of the material
thickness [1], this result was not unexpected, However, lack of sufficient data at the time of this
test made it impossible to evaluate this effect on the prediction of breakdown voltage.

The results for coupon type D indicate that the inclusion of Craneglas in the pottant slightly
increases the electrical isolation capability of the encapsulation system.

Post failure inspection of the coupons indicated that failures always occurred at the edges of
the simulated solar cells. Even though bubbles were purposely allowed to form in the pottant
layers above some of the simulated cells, no failures could be attributed to the presence of the
bubbles. In addition, no special attention was paid to eliminating burrs at the cell edges.

In summary, the test results have demonstrated the utility of the analytical model to predict
breakdown voltages in the ranges of breakdown voltages measured for several different encapsu-
lation schemes. The model overpredicts the changes in breakdown voltage with pottant thickness,
but this can probably be rectified by modifying the model to account for the dependence of
pottant dielectric strength on thickness,
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5.0 THERMAL STRUCTURAL TEST

5,1 TEST OBJECTIVE

The objective of the thermal structural test was to verify the analytical models used to predict
solar cell stress due to temperature excursions, The verification process consisted of measuring
the temperatures and mechanical strains in the cell and in the load-bearing member for a variety
of encapsulation schemes and then comparing the measured strains with predicted strains for the
following parameters:

1, Thermal expansion coefficient of load-bearing member
2. Pottant thickness
3. Powtant modulus of elasticity.

5.2 TEST SPECIMENS

Twelve, one-cell coupons listed in Table 5-1 were used as test specimens for these tests, Two
strain gages and two 30 gage copper/con.:..ntan thermocouples, on¢ each on the cell and on the
load bearing member, were attached to the coupons to measure strain and temperature, Etched,
polycrystalline silicon wafers were used instead of finished photovoltaic cells, In addition, a bare
polycrystalline silicon cell (3.93 inches square), a piece of low-iron glass (5.0 inches square), a
piece of mild steel (5.0 inches square), and a piece of aluminum (5.0 inches squarc) were
instrumented with strain gages and thermocouples to provide calibrations for the strain gages
mounted on the coupons. A two-component epoxy phenolic adhesive (MB-610; Saber Enter-
prises, Long Beach, CA) was used to bond the strain gages to the test coupons, Curing of the
adhesive was performed for one hour at 150°C and then for two hours at 160°C, The geometric
layouts and the constituent material thicknesses of the coupons are illustrated in Figure 5-1,

Three ditferent pottants were used in the fabrication of the coupons:

1 EVA (ethylene vinyl acetate)—supplied by Springborn Laboratories (Enfield, CT)
2. RTV-615 (a silicone rubber)—purchased from General Electric, Inc. (Waterford, NY)
3, 2-2341 (Polyurethane)-—supplied by Development Associates (North Kingston, RI).

EVA was used in three coupons (TSC-1, 6, and 8), RTV-615 was used in five coupons (TSC-2,
3,7, 9, and 10), and polyurethane was used in four coupons (TSC-4, 5, 11, and 12). In coupons
TSC-2, 3,4, 5,7,9, 10, 11, and 12, thin silicon spacers (fabricated from reject solar cells) were
placed between the cell and the load-bearing member in an attempt to control pottant thickness
during the fabrication process,

5.3 TEST SET-UP

A small oven was used to provide the controlled thermal environment for the test specimens.
This oven provides both low (i.e. below ambient) and high temperature (i.e. above ambient) test
conditions, Due to the small size of the oven, only three specimens could be tested simultaneously.
A copper/constantan thermocouple was used to monitor the air temperature inside the oven,
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Test instrumentation is illustrated in Figure 5-2, The strain indicator (shown as item 10 in
Figure 5-2) converted the resistance readings (ohms) from the strain gages to units of strain
(microinches per inch). A potentiometer was used to measure the millivolt readings from the
thermocouples; these readings were manually converted to temperature by consulting a voltage
versus temperature table for copper/constantan thermocouples,

THEAMOCOUPLE (7) \I STRAIN GAGE

& “12' 3: 4, .)

SELECTOR SWITCH (9)

NN

111/111111112

POTENTIOMETER (B)

———

TEST COUPON (TYP.)

OVEN (13) /

SELECTOR SWITCH (11)

|

[

NOTE: NUMBERS IN PARENTHESIS REFER TO
ITEM NUMBERS IN TABLE A2 OF | STRAIN INDICATOR
APPENDIX A, {10)

RESISTON {12)

Figure 6-2, Instrumentation for thermal structural test,
Placement of three typical test coupons in the oven is illustrated in Figure 5-3, and the oven
and supporting instrumentation are illustrated in Figure 5-4, Instrumentation nameplate data
are found in Table A-2 of Appendix A,

5.4 TEST CONDITIONS

5.4.1 Normal Test Sequence

In the first series of measurements, coupons TSC-2, 3, 4, 5,7, 9, 10, 11, and 12 were sub-
jected to an environment where the air temperature in the oven was cycled through the following
sequence:

ambient—>40°C—60-~80—>100->80—>60—~40—~20->0->—20—~
=40 - —20-0°C~>ambient

The temperature at each step was maintained for approximately five minutes (0 ensure
temperature equalization between the test specimens and the air circulating in the oven,

Strain measurements were first obtained for the plain glass, silicon, aluminum, and steel
specimens, These “apparent strain” measurements were used as a reference for subsequent strain
measurements obtained with the test coupons, '
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5.4.2 Overstress Test Sequence

In this series of measurements, coupons TSC-1, 6, and 8 were subjected to an environment
where the alr temperature in the oven was cycled through the following temperature sequence:

ambient > 40°C=> 60 -»80 - 100> 120-» 140-» 120-> 100> 80->60->40-»20->0
w3 == 2y = 40 = (0 > == 403 = 20 ->0° C ~>ambient

The temperature at cach step in this sequence was maintained for approximately 5 minutes to
ensure temperature equalization between test specimens and the air circulating in the oven. The
lowest temperature of this sequence is approximately 20°C below the glass transition tempera-
ture of athylene vinyl acetate (EVA).

As in the normal test sequence, the “apparent strain” measurements were obtained before
obtaining strain measurements with the test coupons,

5.5 DATA ANALYSIS

6.5.1 Apparent Strain Data

When strain gage is bounded 10 a panel which undergoes a temperature excursion, a strain is
induced in the gage even when the panel undergoes free expansion or contraction, ldeally, there
should be no mechanical strain when the thermal expansion of the panel material is unre-
strained, This “apparent strain” is caused by the different thermal expansion coefficients (i.c.
“thermal mismatch™) of the gage, the adhesive, and the panel material. The apparent strain is
highly non-linear with respeet to temperature and must be determined for each gage/panel
combination at every temperature of interest. Strain gages are selectively matched to the panel
material to minimize the apparent strain, However, the apparent strain is zero (i.¢, zeroed out by
the strain indicator; see Figure 5-2) only at a single, arbitrary temperature (ambient temperature
for this test).

Strain measurements for plain silicon, ste!, aluminum, and glass are plotted against
temperature in Figure 5-5. Also plotted in this figure are the strain curves provided by the strain
gage manufacturer. The following conclusions can be drawn from these data: (1) measured
straing for the plain specimens are non-linear with respect to temperature, as expected; (2) the
measured steains differ significantly from the manufacturer’s data; (3) the strains in the two axes
differ significantly for cach biaxial strain gage; and (4) the measured strains indicate the presence
of significant hysteresis during the heating/cooling cycles of the test, The different strains along
orthogonal axes may be due to thermal orthotropy (i.e. different properties for the two ortho-
gonal directions) of the strain gages, of the coupon materials, or a combination of both the strain
gages and coupon materials. The strain measurements were averaged for each temperature and
subsequently adjusted such that the average measured strain versus temperature curve passes
thru zero at 25°C. The adjusted strain for a piain specimen is referred to as the “apparent
strain”.

When a test coupon is subjected to temperature excursions, the resultant strains consist of
those due to thermal mismatch between the cell and substrate and the apparent strain, At cach
temperature, the apparent strain must be subtracted from the measured strain to determine the
strains due only to the mismatch between the cell and the substrate materials.
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5,5.2 Test Coupon Data

Measured cell strains for test coupons with EVA, silicone, and polyurethane pottants are
listed in Tables 5-2, 5-3, and 5-4 respectively, The biaxial strains measured by each strain gage
were recorded on separate channels of the strain indicator, designated as sections 1 and 2. These
data include apparent strains of the coupon materials, and for convenience the apparent strains
for silicon at each temperature are listed in the tables, As with the plain silicon, aluminum, glass,
and steel specimens, the strains measured on the coupons were adjusted to give zero strain at
ambient temperature,

TABLE 5-2. MEASURED STRAINS IN SILICON CELLS FOR COUPONS WITH EVA

Measured Strain, uin/inch
Plain Silicon Alum. Substrate | Glass Substrate| Steel Substrate
Temperature,
°C Sec.1 | Sec.2 | Sec.1 | Sec.2 | Sec. 1| Sec. 2| Sec. 1| Sec. 2
—40 =275 | =320 | —403 —334 | —241| -301 | —350| —308
-20 =165 | =190 | —196 —-156 | —120| —145| —195| —189
0 =75 | =100 -=97 -~74 —-55{ =—63| —110| —118
20 0 0 0 0 0 0 0 0
40 10 -2 48 50 10 26 55 69
60 20 40 44 56 15 47 66 89
80 20 50 24 57 4 49 62 * 85
100 10 50 10 54 -18 33 73 98
Structural Index = ayubecrace (E/t)pottant 1240 460 453
Pottant Thickness, mil 15 16 19
Coupon ID TSC-6 TSC-1 TSC-8

The coupons are rank ordered with respect to a structural index, which is listed at the bottom
of each column in the tables. This structural index, which is the product of the substrate*
thermal expansion coefficient (a) and pottant modulus of elasticity (E) divided by the pottant
thickness (t), indicates the expected ranking of each coupon with respect to cell strain. A high
value of structural index indicates a high expected value for cell strain, etc. Room temperature
matesial properties were used to determine the indices. Note that cell strain is not linear with
respect to structural index; the indices are useful only to rank order the coupons with respect to
cell strain,

*The term substrate as used hei¢ means a flat panel of the same material used in the load-bearing member of a module,
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TABLE 5-3, MEASURED STRAINS IN SILICON CELLS FOR COUPONS WITH SILICONE

o ‘ Meastred Strain, uin/inch
Plain Silicon | Alum. Substrate | Steel Substrate | Glass Substrate| Steel Substrate| Glass Substrate
Temperature, ‘ S e
°C Sec, 1 | Sec,2 | Sec.!| Sec.2 |Sec. 1| Sec.2 | Sec. 1| Sec. 2 | Sec. 1| Sec, 2| Sec, 1 | Sec, 2
-~ 40 =275 | =320 | =248 | ~285 | =274 | =M2 | =42 ] =347 | =299 | =301 | ~203 | —~252
-20 =165 | =190 | =145 =172 | =165 | =195 | =194 =197 | =190 | —~202 | ~108 | =120
0 =75 | =100 - 60 =831 =70} =120 | =96 =94 | =95! —100| -—~60| ~78
20 0 0 0 0 0 0 0 0 0 0 0 0
40 10 25 36 69 45 M 45 55 42 52 16 21
60 20 40 50 85 40 56 75 103 48 58 12 40
80 20 50 26 99 25 53 86 129 33 51 —14 45
100 10 50 12 101 1) S8 110 170 28 64| =28 32
Stractural Index = dyubairase (B Oportant 1544 1080 828 486 395
Pouam Thickness, mil 8 5 6 1 2
Coupon 1D TSC-7 TSC-9 TS5Ca2 TSC-10 TSC-)

TABLE 5-4, MEASURED STRAINS IN SILICON CELLS FOR COUPONS WITH POLYURETHANE

Measured Strain, yin/inch
Plain Silicon | Glass Substrate | Steel Substrate | Stecl Substrate| Glass Substrate
Temperature,
°C Sec, 1 Sec. 2 | Sec. 1| Sec, 2 {Sec. 1 | Sec. 2 | Sec. 1 | Sec. 2| Sec. 1 | Sec. 2
—40 -275 —320 NA NA | —455 | —442 | NA NA NA NA
-20 —165 -190 NA NA | =273 =273 | NA NA NA NA
0 —~175 ~100 —65 | —76 | —100| —100 | —6% | —B6 | —60 | —67
20 0 0 0 0 0 0 0 0 0 0
40 10 25 14 36 36 30 9 47 38 37
60 20 40 22 39 29 55 1 59 40 52
80 20 50 13 48 13 26 | —16 717 37 56
100 10 50 -6 39 1 1 581 -3 67 43 50
Structural Index = a,; (E/t)port 1021 486 356 285
Pottant Thickness, mil 1 12 5
Coupon ID TSC-4 TSC-11 TSC-12 TSC~5
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The coupon strains are generally comparable in magnitude to the apparent strains. This
means that the apparent strains are large compared to the strains resulting {rom the thermal
mismatch between the cells, pottants, and substrates, In some cases the coupon strains are less
than the apparent strains in absolute value, This result appears to contradict the expectation that
a cell is in compression for temperatures below ambient (negative temperature excursions) and in
tension for temperatures above ambient (positive temperature excursions), For example, in Table
5-2 the strain in section 2 of coupon TSC-8 is —308 pm/m at —40°C, The apparent strain at
—40°C is — 320 uin/in, which lmphes that the cell is in tension, A possible explanation for this
discrepancy is that the apparent strain is different for each silicon cell and thus different for each
coupon,

Another factor to consider is the accuracy of the strain gages and the measurement system.
Metal foil, resistance-type strain gages are usually accurate to within 1 ginch/inch, When the
entire strain measurement system, including gages, wires, amplifiers, and indicators is taken into
account, the accuracy is estimated to be within %5 percent of the measured value, Thus for a
measured strain of 300 winch/inch, the estimated measurement error is +15 ginch/inch.

5.5.3 Comparison of Test Results with Analytical Predictions

In Phase 1 of the program, the effects of different pottant and substrate combinations on cell
stress were studied analytically by means of finiie element models [3). These models assumed

temperature-invariant material propertics and a /inear relationship between stress and strain.
The key results of the studies are

1, The silicon cell is strained when there is a mismatch between the cell and the substrate
thermal expansion coefficients, The cell is in compression for negative temperature
excursions and in tension for positive temperature excursions.

2. For the same pottant parameters (i.e. thickness and modulus of elasticity) the cell is most
strained by an aluminum substrate, less so by a steel substrate, and least strained by a
glass substrate,

3, The cell strain is attenuated when the pottant is designed to accommodate the thermal
mismatch between the cell and the substrate. In effect, when the pottant is made more
flexible by decreasing the modulus of elasticity (or increasing pottant thickness in some
cases), the cell strain decreases. Conversely, as the pottant is made stiffer by increasing the
modulus of elasticity (or decreasing the thickness in some cases), the cell strain increases.

To eliminate the influence of material property uncertainties, comparisons are made between
coupons with the same substrate and pottant materials, Also the properties at —40°C are
probably the most reliable for predicting cell strain, because the pottants are stiffer at that
temperature than at higher temperatures., Therefore, the cell strain due to thermal mismatch
between cell, pottant, and substrate should be highest at that temperature, At elevated tempera-
tures, the pottant moduli decrease, and the resultant cell strains decreased accordingly.

In Table 5-2, which lists the results for coupons with EVA, none of the coupons have the
same substrate material. However, coupon TSC-6 (aluminum substrate) was expected to have
the highest cell strain, and this is so indicated by the data for —40°C. On the other hand, coupon
TSC-8 (steel substrate) exhibits higher cell strains at higher temperatures, assuming that the
silicon cells for both coupons have the same apparent strain versus temperature relationship,



In Table 5-3, comparisons can be drawn between the steel substrate coupons, TSC-9 and
TSC~10, and between the glass substrate coupons TSC-2 and TSC-3, TSC-9 was expected to
exhibit a higher cell strain than TSC-10; however, at —40°C the cell strains are about the same.
As predicted, TSC-2 exhibits a higher cell strain than TSC-3, TSC-~7, which has an aluminum
substrate, was expected 10 exhibit higher cell strains than the other coupons with silicone pottant,
However, the results indicate that the cell strain is relatively low in TSC-7,

In Table 5-4, which is for coupons with polyurethane pottart, meaningful comparisons
cannot be made because cell strains were measured for only one coupon at —40°C.,

Analytical predictions were made for coupons TSC-1, 2, 7, and 9 using material properties
evaluated at room temperature, The analytical predictions, the corresponding test results, and the
structural indices are shown in Table 5-5, These results were determined by subtracting the
apparent strains from the coupon strains and then averaging the results for sections 1 and 2 of the
strain gages. The structural index ranking is consistent with the analytical predictions, and there
is good agreement between analysis and test data for TSC-2, There is poor agreement between
analysis and test data for coupons TSC-1, 7, and 9.

TABLE 5-5. THERMAL STRUCTURAL TEST RESULTS AND ANLYSIS PRECITIONS

Analytical Stress,| Predicted®® Strain, Measured Strain,

Test Specimen| Description psi at —40°C | pin/in at —40°C | win/in at —40°C | S.L°
TSC-1 Glass/EVA - 462 -27 +27 460
TSC-2 Glass/Silicone —762 —45 —47 828
TSC-7 Alum./Silicone —3156 —186 +31 1544
TSC-9 Steel/Silicone ~-1110 —65 +5 1080

* 5.1 = Siructural Index = Oyypmrae (B/Opomam
*® Maierial properties evaluated & room temperature

A cell strain of —186 uinch/inch was predicted for coupon TSC-7. The expected value of
measured strain at —40°C (including apparent strain) was about 500 uinch/inch. The maxi-
mum measurement inaccuracy was therefore expected to be about 25 uinch/inch, However, since
the measured coupon strain was about half the expected value, it is concluded that some factor,
which remains unknown at present, other than the accuracy of measurement system must be
influencing the test results,

5.6 DISCUSSION

Some correlation was seen between the test results and the trends predicted by analysis, In
general, there was poor agreement between analysis and test. The factors which probably
contributed most this lack of correlation were; (1) the large values of apparent strain compared to
strain resulting from thermal mismatch, and (2) the accuracy of the strain measurement system,
In some cases, the large apparent strains gave rise to expected cell strains (i.e, those strains due to
thermal mismatch) comparable in magnitude to the inaccuracy of the measurement system.
However, in the case of coupon TSC-7 (an aluminum substrate coupon), the expected strains
were large bus were twice the value of the measured strains; both the expected and measured
strains were large compared to the inaccuracy of the measurement system.
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Uncertainties in material properties also contributed to the discrepancies between analysis
and test data, Properties that require verification are the thermal expansion coefficient of poly-
crystalline silicon and pottant modulus of elasticity versus temperature, ‘

The trends predicied by the analytical model appear to be reasonable and conservative, but
the test results are inconclusive with respect to verification of the analytical model. A limited
retest with a “stiff” pottant is recommended; the modulus of this pottant should be greater than
10° psi,
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6.0 STRUCTURAL DEFLECTION TEST

6.1 TEST OBJECTIVE

The objective of the structural deflection test was to verify the analytical models used to
predict solar cell stress, load-bearing layer siress, and module deflection that result from a
uniform pressure load on the module surface, The verification process consisted of measuring
module deflection, stress in the solar cell, and stress in the load-bearing member for the following
parameters:

1. Pottant thickness

2. Ribbed versus unribbed wood substrates

3. Pottant modulus of elasticity

4, Normal pressure load

5, Cell location

6, Load-bearing member material and thickness,
6.2 TEST SPECIMENS

Nine three-cell modules listed in Table 6-1 were used as specimens for these tests. The
geometric layouts and the constituent maierial vhicknesses for each module are illustrated in
Figure 0-1, Etched, polycrystalline silicon wafers were used rather than finished photovoltaic
cells, Three of these unfinished cells were bonded to each test module, A silicone pottant, RTV
615, was used to bond the cells to the load-bearing members of modules SDM-1, SDM-2, and
SDM-5 through SDM-9, Polyurethane was used to bond the cells to the load-bearing members
of modules SDM~3 and SDM-4. Thin silicon spacers were inserted between the cells and the
load-bearing member of each module in an attempt to control pottant thickness during the
fabrication process. Two strain gages were associated with each cell position on a module; one
strain gage was bonded to the bare surface of the cell, and the other was located opposite the cell
and bonded to the anti cell side of the load-bearing member, The wood ribs on modules SDM-7
and SDM-9 were bonded to the wood substrates with structural epoxy (Epiphen ER-825-A,
Haven Industries, Inc., Philadelphia, PA).

The thickness of the load-bearing member for several test modules varied considerably, as
shown in Figure 56-1. Here, thicknesses measured approximately two inches and 10 inches in
from the edges of the module are shown in ellipses.

Edge frame details are shown in Figure 6-2. Due to limited availability of materials, two
four-foot lengths of each aluminum extrusion shown in this figure were used to protect the edges
of a module during test.

6.3 TEST SET-UP

The fixture used to support a module during this test is shown in Figure 6-3, This fixture is
about 48 inches square in horizontal cross-section and was fabricated from a surplus trash
container, A four-foot square test module rests on four steel angle bars, which are bolted to the
inside periphery of the container, A uniform pressure load is applied to the test module by filling
the upper portion (i.c. above the test module) with water. The water is contained within a large
plastic bag made of 6-mil thick polyethylene, The fixture is pivoted on one edge, and a load cell is
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used to determine the weight of the water, which is directly proportional to the pressure load on
the test module, in the apparatus. The fixture with a module in place is shown in Figure 6-4.

Instrumentation of the test apparatus is illustrated in Figure 6-5. The numbers shown in
parentheses in this figure refer to equipment item numbers listed in Table A-3 of Appendix A.

Test measurements consisted of total load (i.e. the weight of the water) on the module,
module deflection at three locations, and strain gage resistance. 8train gage resistance was
converted to units of strain (microinches per inch) by the strain indicator. Load versus deflection
curves were generated by the X-Y plotter, which was connected to the load cell and the
transducers at the center cell and mid-diagonal cell positions. A dial indicator was used to
measure module deflection at the corner cell position. Ports cut into the side of the test fixture
permitted access to the transducers and dial indicator.
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Total load, module deflection at the three cell positions, and strain in the cell and load-bearing
member at each cell location were measured at each pressure step, For modules SDM-1, 3, and
4, the cells faced the bottom of the test fixture, For modules SDM=-5 through SDM-~9, tests were
performed with the cells facing upward (i.e. the cells were on the water side). For module
SDM-2, one test was performed for the cells facing upward, and another test was performed for
the cells facing downward,

6.4.2 Overstress Tust

In the overstress test, modules SDM=6 and SDM-~8 were cycled through the following
pressure sequence

0+ 250250275 -+ [00-~75->50~25->0 psf

The cells faced upward during these tests. As in the normal tests, the total load, strains, and
deflections were recorded for cach pressure step.

6.5 DATA ANALYSIS

6.5.1 Load-Bearing Layer Deflection and Stress

Plots of load versus deflection for the test specimens are shown in Figures B-1 through B-14
of Appendix B. For purposes of discussion, Figures B-7 and B-14 are presented in this section as
Figures 0-6 and 6 7, respectively, Strains measured for the cells and load bearing member of
rach test specimen are listed in Tables B 28 through B..41,

As expected, the ribbed wood modules (SDM-7 and SDM-=9) were the only modules that
deflected lincarly with Joad; all other modules, including SDM-6 (plain wood), deflected
nonlinearly with load. This behavior is shown in Figures 6--0 and 6-7, which are for modules
SDM 9 (ribbed wood) and SDM-§ (piain wood), respectively.

The apparent stilfness of the unribbed modules increases as the load and subsequemt
deflection increase. This behavior is due to “membrane action” (i.e, a spanwise stretching of the
modules) and becomes a sigmificant factor when the deflection exceeds one half of the module
thickness. ‘This nenlinear behavior causes the load-bearing member deflection and stress for a
given load to be less than the deflection and stress predicted by lincar theory [13] which does not
account for membrane action,

T'he ribbed wood modules, on the other hand, exhibit linear behavior, This behavior was
expeeted because the module deflections were less than one half of the thickness of an unribbed
plate ol equivalent stiffness. Note that SDM-7 failed at a load of 30 psf because of local stress
concentrations in the module at the ends of the ribs, which were not supported by the test fixture,
This failure is discussed in more detail in Section 6.6.

Test data and analytical predictions for module deflection and stress in the load-bearing layer
are summarized in Table 6-2. Deflections arc listed for the center of each module, The stresses
for the glass superstrate modules, SDM -1 through SDM-~4, are listed for the top corner surface,
The stresses for the other test specimens, which are substrate module designs, are listed for the
bottom center surface, "These deflection and stress locations were chosen to permit correlation
with analysis predictions which were derived from curves developed by JPL [10]. The analysis
predictions were based on an unsupported edge distance of 44 inches (the module length of
46 inches minus a one-inch cdge interface for the angle bar supports in the test fixture) and the
average thicknesses listed in Table 6-2. Thickness for the glass and wood test specimens varied
considerably, and at least 10 thickness measurements were taken for cach madule to obtain the
averages listed,
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The test results and analysis predictions for module deflection agree to within 10 percent for
all modules except SDM-8, the steel substrate module, The analysis predictions for the glass
superstrate modules are high by 4.6 to 9.2 perceni The analysis predictions for the unribbed
wood modules, SDM~5 and SDM-6, are low by 6.8 and 7.1 percent, respectively, The best
agreement between analysis and test was exhibited by the ribbed wood specimen (SDM-9),
which agreed to within 2.8 percent,

The steel substrate module exhibited the greatest discrepancy between analysis and test; the
analysis prediction was 16 percent higher than the test result. This result is surprising since the
steel module was expected to correlate best with analysis predictions, The thickness of the steel
was uniform and the modulus of elasticity of the steel should be about 29-30 X 10° psi as listed
in the literature,

[ Stresses were determined by substituting measured strains into the following equations
ref, 2, p. 424});

gy = T%r (G‘ + l'fg) (6~rl)
E
oy ™= T:-;y' (&g + vey) (6-2)

Here o, and o, are the principal stresses associated with the strains ¢ and ¢ measured along
perpendicular axes. Values for Poisson’s ratio, », were 0,29, 0.30, 0.22, 0,29, and 0.40 for glass,
steel, wood, silicon, and pottant, respectively. Poisson’s ratio for glass was assumed to equal that
of silicon,

The test results and analysis predictions for load bearing layer stress indicate much greater
discrepancies than the deflection results. Except for the wood modules, the test results were lower
than analysis predictions by 35 to 50 percent. The test results and predictions for SDM-2 agreed
to within 7.6 percent. There was good correlation between analysis and test for the wood
modules; the analysis predictions were low by 8,6 and 3.4 percent for SDM-5 and SDM-6,
respectively.

The relatively poor correlation between analysis and test for the glass superstrate specimens
is not surprising. According to the previously cited JPL study {ref, 10}, a high stress gradient
exists at the corners of the modules where these comparisons were made. The analysis predic-
tions were for the maximum principal stress at the top surface of the glass. It is quite possible
that the strain gages were not located at the points of maximum stress. More extensive
monitoring of the strain distributions in the vicinity of the corners of the specimens might reveal
better correlation.

The stress distributions at the bottom center of the modules, according to the JPL study, are
fairly uniform, Therefore, the strain gage location is not as critical for the substrate modules as it
is for the glass superstrate modules, Consequently, the substrate specimens should show good
agreement between analysis and test. The unribbed wood modules do show good correlation,
However, the steel substrate specimen shows a discrepancy of 46 percent, The explanation for
this is not apparent,

6.5.2 Solar Cell Stress

The silicon cell strains and maximum principal stresses for a uniform 50 PSF normal load
are listed in Table 6-3. For convenience, the module deflections are also listed. The following
conclusions can be drawn from the data:

1. Cell stress was highest for the unribbed wood substrate modules.

2, Cell stress was lowest for the glass superstrate modules,



-

"1531 3y Suunp papen M s ON

Buijpuey pue uonesuqey Suuinp poSewep d1am s> papesy),

pood sjjo |y LEO0 4 74 t9 (A YA Jualjlg POO 6
pood spjo iy w0 £101 1 144 0l uooig PAg 8
nadsns 19410 ‘pood ]2 saus0) 9’1 9€0¢ | 74 9¢l1 81 Juonig pPoom 9
radsns 120 £21u0 ‘papen |3 Jul0) (A} €91 (34 €L (1]8 Auog PooM S
pood s13410 ‘papen |3 Jauio) 650 6L 0z €€ sl aueyiaunkjog ssely | ¢
wadsns [j22 Jaus00) 190 66¢ 61 8 9 Jueyiainijog SSef) €
povd s13y10 ‘pIpPED [0 U] 90 oLL {4 ¥ @ uootig ssejy | ¢
pood s JIv 290 109 LA 9 (1] Juooiig ss2l) I-NdAs
T Jswswwo) sagour 1ed TRuueg) | puuey) Jtw [eurey sfey | Imnpopy
‘uonafpq ‘ssang ‘ssauydyy Suureag 53],
Pueg fedidunig peo
wnaIxepy wnuxepy
(uy/urr)
urteng painseapy juejog

STIIO NOJINS NI SISSIULS TVAINIUD GNV SNIVHLS GIUNSVYIN 40 AHVWIWNS €-9 318VL

6-12



3. The cell stress for the steel module was higher than that of the glass modules, although
the steel module deflection was less.

4, With the exception of SDM-9, the maximum cell strains and load bearing layer strains
occurred at the corner locations. This is a very significant result in that, for modules with
nonlinear load versus deflection characteristics, the maximum cell strains occurred at the
locations of maximum strains in the load bearing members, rather than in the centers of
the modules, where the maximum deflection occurred. In the case of SDM-9, which was
the only module with linear load versus deflection characteristics (excluding SDM-7
which failed prematurely), the maximum cell strain also occurred at the location of
maximum strain in the load bearing member. However, consistent with linear theory
[13], the point of maximum strain and deflection occurred at the center of the load
bearing member of SDM-9,

5, The maximum cell stresses at 50 psf loading are well below the 8000 psi allowable stress
for silicon established during Phase 1,

These results were consistent with the Phase 1 analysis predictions, It should be noted that no
cells were damaged during the tests, However, several cells, such as the corner cells of SDM-3
and SDM-5 were cracked before testing, and the results for these modules should be considered
suspect, There also appeared to be a high void fraction in the pottant for the glass superstrate
modules, Although it was impossible to inspect the pottant in the steel and wood substrate
modules, the void fraction in the pottant was probably high in these modules as well, These
factors may explain why the cell siress for SDM-1 was less than that for SDM-2, which
contradicts the analytical predictions, A cracked cell may be the reason why the cell stress for
SDM-5 is less than that for SDM-6, which, again, is contrary to the analytical predictions,

The test results and analysis predictions for the ratio of load bearing layer strain to cell strain
(at 50 psf loading) ar¢ summarized in Table 6-4. Test specimens SDM-3 and SDM-5 were not
analyzed and are therefore not included in the table, Clearly, the analysis predictions for the
superstrate modules (SDM~1, 2, and 4) are low by approximately a factor of two. Analysis

TABLE 6-4. SUMMARY OF TEST RESULTS AND ANALYSIS
PREDICTIONS OF THE RATIO OF LOAD BEARING
LAYER STRAIN TO CELL STRAIN

Ratio of Load Bearing Layer Strain
to Silicon Cell Strain
Test Module | Test Results | Analysis Prediction 4, Percent

SDM-1 8.8 4.2 -110
2 10.7 4.8 —123
4 10.7 4.8 —123
6 5.4 7.0 +23

8 3.2 3.4 +6

9 6.2 7.0 +11

Analysis-Test
- QDY R CS

Analysis X 100
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predictions for the substrate modules (SDM-6, 8, and 9) are high by 6 to 23 percent, This
result suggests that the discrepancies are due to the effects of the membrane effect mentioned
earlier and will be discussed in more detail in Section 6,6.2. This hypothesis is supported by test
data, The superstrate module SDM-2 was tested with the glass side down as well as with the
glass side up. Consistent with analysis predictions, the cell strain changed sign but
had approximately the same magnitude in both cases, The average glass strain, however, was
=320 pin/u with the glass side up and + 133 uin/in with the glass side down, This indicates a
uniform compression of approximately —95 uin/in superimposed on a bending distribution of
approximately <228 pin/in, When the SDM-2 measurements were adjusted for the uniform
compressive strain, the discrepancy between analysis and test was reduced from — 123 percent to
—81 percent.

8.6' DISCUSSION

6.6.1 Load-Bearing Layer Defiection and Stress

The following conclusions can be drawn from the test and analysis comparisons made in
Section 6.5:

1. Consistent with analysis predictions, all unribbed specimens exhibited nonlinear load
versus deflection characteristics and the ribbed specimen exhibited linear characteristics.

2. The maximum deflections ranged from 0,37 inch for the ribbed wood panel to 1,42 inches
for the unribbed wood panel. With the exception of the steel panel, the test results and
analysis predictions agreed to within 10 percent.

3. The glass superstrate stresses determined by test were about 40 percent lower than the
analysis predictions, This result is not surprising since the strain gages were probably not
located at the points of the maximum principal stresses to which the test results were
compared.

4, The wood substrate stresses compared well with analysis predictions. Here, the strain
gages were located at the bottom center of the modules where the stress distribution is
very uniform,

5, The steel substrate results do not compare well with analysis predictions. The reasons for
the large discrepancies are not apparent.

6.6.2 Solar Cell Stress
The key results for silicon cell stress are

1. No cells were damaged during the test and the maximum principal stresses were well
below the 8000 psi allowable stress.

2. In every case, the maximum cell stress occurred at the location of the maximum stress in
the load-bearing layer, For the modules with non-linear load versus deflection character-
istics, the maximum stress occurred at the corner, rather than at the center, where the
deflection was maximum. In the case of the ribbed wood module, the maximum stress in
both the cell and the load bearing layer occurred at the center of the module, as expected.
This suggests that the maximum cell stress is not directly related to deflection,

3, The analysis predicts a smaller ratio of load-bearing layer strain to cell strain in the case
of the superstrate panels. In effect, the analysis predicts higher cell stress than revealed by
test. The opposite is true for substrate panels. This discrepancy is probably due to
spanwise stretching effects in the load-bearing member,
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As explained in the Phase 1 report [3], the relationship between cell strain and load-bearing
layer strain for given pottant parameters was determined by means of a two-dimensional finite
cletaent analysis, An enforced displacement was applied to the load-bearing layer, and the
resulting ratio between cell strain and load-bearing layer strain was determined. Two different
enforced displacement functions were applied sequentially to the load-bearing layer. The
displacement functions were

a. An out-of-plane displacement which forced the load bearing layer to have a uniform
curvature

b. An in-plane stretching of the load bearing layer.

The cell strain was found to be much more sensitive to the out-of-plane displacement
function than to the in-plane stretching displacement. Accordingly, the out-of-plane displacement
was used to develop the design curves which were presented in the Phase | report,

When a module deflects under a pressure load applied to the top surface, bending stresses
vesult, The lower surface of the module is in tension and the top surface is in compression. If the
module deflection exceeds about one-half the thickness, spanwise stretching of the module causes
a membrane tension stress in the central area of the module, When the edges of the module are
not fixed in the in-plane directions, a compressive stress develops around the periphery of the
module to equilibrate the membrane stress, This compressive stress at the edges would increase
the bending compressive stress at the top surface and decrease the bending tension stress at the
bottom surface. 4

The cell and strain gage locations are shown in Figure 6-1 for both a superstrate and a
substrate module. At the corner of the modules, where the maximum cell stresses occurred, the
measured compressive stresses at the top surface of the module would be higher than those due to
bending alone, The measured tension stresses at the bottom surface of the substrate modules
would be lower than those due to bending alone.

The finite elemen. analyses indicated that the cell stress was relatively insensitive to the
membrane effects. Thus, for a superstrate module, the ratio of load-bearing-layer stress to cell
stress would be larger than analysis predictions, and the opposite would be true for a substrate
module., This was indeed demonstrated in the test results,

6.6.3 Failure of Test Specimen SDM-7

The ribbed-wood test specimen, SDM~7, failed at a load of approximately 30 psf. The
failure occurred in the load-bearing member a. the ends of the ribs, as illustrated in Figure 6-8a.
The failure occurred because the ends of the ribs were not supported by the test fixture, The
edges of the module were supported by the test fixture, but the ribs terminated just short of the
edge support, The location of the resultant stress concentration is shown in Figure 6-8b, In a
ribbed module design, the majority of the applied load is transmitted to the edge supports by the
ribs, When the ribs a7e not supported, the load in the ribs must transfer through the panel to the
edge support, and a resultant spanwise tension stress is generated through the thickness of the
panel. In this case, the resulting failure was delamination of the wood in the spanwise direction,
which is a weak direction for the wood product, When the ribs were directly supported by the
test fixture, as illustrated in Figure 6-8¢c, the module sustained 50 psf loading without failure,
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7.0 THERMAL TEST

7.1 TEST OBJECTIVE

The objective of the thermal test was to verify the analytical methodology and computer
algorithms for computing solar cell temperature and electric power output, The main test goal
was to confirm the influence of the module backside emissivity on cell temperature and the
insensitivity of cell temperature to pottant thickness, The verification process involved measuring
steady-state solar cell temperature and power output for a known radiative energy source and
other well-defined environmental conditions,

7.2 TEST SPECIMENS

Four minimodules, as designated in Table 7~1, were used in these tests, Nine AR-coated,
single-crystal silicon cells were used in each minimodule, These cells *vere two inches square and
were encapsulated with EVA/Craneglas on the sun side and white pigmented EVA/Craneglas
on the antisun side, One cell was centrally located in each minimodule and eight cells were
symmetrically located around the periphery of the central cell, as shown in Figure 7-1, The cells
were connected electrically to an external circuit so that electric power could be withdrawn from
the minimodules. The eight peripheral cells were connected in series, but the central cell was
connected to a different circuit, This arrangement was chosen to permit a symmetric temperature
environment for the cells, while simultancously permitting measurement of the electrical power
produced by the central cell.

TABLE 7-1. THERMAL VERIFICATION TEST SPECIMENS

Module No. T™M-1 T™M-2 TM-3 T™M-4
Load Bearing Member | Low-Iron Glass Mild Steel | Wood Product | Wood Product
Top Cover — Tedlar Tedlar Tedlar
Back Cover Aluminized Polyester — —_— —
Pottant Thickness, mil 18 18 18 36

Each minimodule was mounted in an aluminum edge frame. The cross-sectional details of a
typical frame were the same as those shown in Figure 6-2 for the structural deflection test
specimens,

As shown in Figure 7-2, thermocouples were located on the backside of the center cell of each
minimodule, Thermocouples were also located on the back cover of each module and on the
backsides of edge cells in modules TM~1, TM-3, and TM~4. In addition, three thermocouples
were attached to the edge frame of module TM-~1, Thermocouples were attached to the edge cells
to provide backup instrumentation in case of thermocouple breakage during module fabrication
and during the test, A comparison betweuen center cell and edge cell temperatures also permits an
estimate of the lateral temperature gradient in a module, The thermocouple numbers shown in
Figure 7-2 correspond to the individual channels of the data acquisition system described in
Section 7.3,3, The backside emissivity of each module was changed (by application of black tape
to obtain a high emissivity surface or by application of aluminized Mylar tape to obtain a low
emissivity surface) during the test,
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7.3 TEST SET-UP

7.3.1 Genara! Copsiderations

Results of the thermal analysis deseribed in veference 3 indicate that the cell temperature is
rather insensaive to pottant thickness and moderately sensitive to module backside emissivity.
These results were caleulated for an air speed of 1 meter/sec, Recent tests at JPL [4] have shown
that cell temperature is very sensitive to wind speed, moderately sensitive to wind direction, and
rather inseositive to ambient air temperature,

The operational thermal environment is difficuds 1o simulate in the laboratory, Those items
most difficult to simulate are the sky background temperature, the airflow around the module,
and the incident solar radiation, For the thermal test deseribed herein, facilities were not
conveniently available to provide a controlled pir flow around the modules, 1n addition, no test
facility is known ta have a capability for simalating the sky background temperature,

‘T'hough the operationat thermal environment desceribed in reference 3 could not be simulated.
the dependence of cell temperature on pottant thickness and module backside emissivity could be
verified by a sutably designed test apparatus, Verification of the thermal model would therefore
lie in the ability of the model to predict the eell temperature for the thermal condiiions existing in
the apparatus. Therefore the apparatus was designed to provide: (1) a known convective cooling
environment, (2) a known thermal radiation environment, and (3) a radiant energy source of
known spectrum and ditensity,

7.3.2 Equipment tayout and Instrumentation

The thermal test was performed in the Bally test chamber located at the Hughes facility in El
Segundo, California. The dimensions of this chamber (7 feet high X 7 feet wide X 15 feet long)
are large enough to accommodate the radiant snergy source, test specimens, and dedicated test in-
strumentation. Enclosure of the entire test set-up provided « thermal radiation background
environment with measurable boundary temperatures,

issential features of the test set-up are illustrated in Figures 7-3 and 7-4. Quartz lamps
served as the radiant energy source. These lamps were inserted in three holding fixtures mounted
on rails; the rails, in turn, were attached to a moveable cart, The desired raziiant energy flux in
the plane of the test specimens was achieved by adjusting the distance between the lamps and the
modules. Flux uniformity was controlled primarily by the number of lamp bulbs in each fixture,
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A 3 feet X 5 feet panel of low-iron glass (0.186 inch thick) was placed between the lamps
and the test specimens, and a 3 feet X 5 fzet black-painted wood panel was placed behind the
specimens, This configuration was chosen so that the module radiation environment was
controlled primarily by the front and back panels. The glass transmits 91 percent, reflects
7 percent, and absorbs 2 percent of the incident shortwave radiation from the lamps when the
lamps are operated at rated voltage (240 volts), The glass is essentially opaque to low-
temperature infrared radiation from the test specimens, A separation distance of 12 inches
between the test specimens and the front and back panels was chosen to permit convenient access
to the test specimens during the test, as well as to permit a low resistance flow path for hot air to
exit the chamber, The test specimens were spaced & inches apart,

Natural convection, that is, air flow due to temperature gradients, was used as the air cooling
mechanism for the test specimens, Conditioned air was introduced through two ports in the
chamber wall, A maximum of 810 cfm was available, and flowrate control was achieved by
obstructing the inlet ports. An exhaust slot in the chamber roof draws oif the stratified hotter air
near the roof of the chamber. A hot wire anemometer was used to measure the air velocity and to
confirm that essentially natural convective flow condition existed near the modules,

A pyranometer and a pyrheliometer were used to measure the magnitude and uniformity of
the radiant energy flux in the plane of the test modules, The pyranometer was placed in a fixed
position on the center line of the plane of the test modules; readings from this device were used to
set the lamp voltage and distance during all test runs, The pyrheliometer was used to determine
flux uniformity; this device was water cooled, mounted on a wand, and inserted through the
exhausi slot in the ceiling of the test chamber,

Copper-constantan thermocouples were used to measure temperature. Thermocouples
10 mils in diameter were atcached to the cells before encapsulation and attached to the back cover
of each module after encapsulation. Thirty gauge thermocouples were attached to the edge frame
of module TM-1, the front and back panels, and to the walls of the chamber. Four 30-gauge
thermocouples were used to measure air temperature in the vicinity of the test modules, and
another was used to measure air temperature below the modules. The locations and identification
of those thermocouples associated with the modules are shown in Figure 7-2, and those of ihe
other thermocouples are shown in Figure 7-5,

Other support instrumentation is shown in Figure 7-6, Thermocouple data were transmitted
from the test chamber to the test facility control room by the remote data scanner. Information
from the remote data scanner was acquired by the test data acquisition system and then
subscquently sent to the data iogger for immediate viewing on a CRT or to the data manager for
subsequent storage and later printout,

g
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7.4 TEST CONDITIONS

The thermal test consisted of eight test runs in which the incident radiant energy flux and the
backside emissivities of the modules were varied for module operation in both the power
generation and open circuit modes. At the request of JPL and Spectrolab, an additional test run
was performed for modules with insulated backsides. In this run, the backside of each module
was covered with one-inch thick polyurethane foam. This test condition is an approximate
simulation of a rooftop installation, where airflow past the module backside is expected to be
severely restricted. The test conditions are summarized in Table 7-2.
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TABLE 7-2. THERMAL TEST PROGRAM

Front/Back Emissivity
Nominal Radiant Energy
Flux in Plane of
Test Run Modules, W/cm® T™1 TM2 T™3 TM+ Comment

! 0.08 0.8/0,04 | 0.88/0.5 | 0.88/0,9 |0.88/0.9 | Open Circuit

2 0.08 0.8/0.04 | 0.88/0.5 | 0.88/0.9 | 0.88/0.9 | Power Generation

3 0.114 0.8/0.04 | 0.88/0.5 | 0.88/0.9 |0.88/0.9 | Power Generation

4 0.114 0.8/0.04 | 0,88/0.5 |0.88/0.9 | 0.88/0.9 | Open Circuit

5 0.114 0.8/0.95 } 0.88/0.95 | 0,88/0.03 | 0.88/0,03 | Open Circuit

6 0.114 0.8/0,95 | 0,88/0.95 | 0,88/0,03 | 0.88/0.03 | Power Generation

7 0.08 0.8/0.95 | 0.88/0.95 | 0.88/0,03 | 0.88/0.03 | Power Generation

8 0.08 0.8/0.,95 | 0.88/0.95 | 0.88/0.03 | 0.88/0.03 { Open Circuit

9 0.08 0.8/0.95 | 0.88/0,95 | 0.88/0.03 | 0.88/0.03 | Open Circuit
Uninsulated

10 0.08 0.8/NA | 0.88/NA | 0.88/NA | 0.88/NA | Open Circuit
Insulated

A nominal radiant energy flux of 0,08 watt/cm® was chosen to simulate (as closely as
possible) the “nominal thermal environment” used in the definition of the nominal operating cell
temperature (NOCT), The higher flux of 0,114 watt/cm® was chosen arbitrarily. The procedure
for adjusting the lamps is shown in Figure 7-7. The voltage reading on the pyranometer was
monitored when adjusting both the lamp voltage and the distance between the modules and
lamps. The pyrheliometer was then used to check flux uniformity, The radiant enc. gy flux could
be altered by rotating the lamp cart and by changing the number of lamp bulbs,

The procedure followed for each test condition is illustrated in Figure 7-8, Special care was
taken to ensure the existence of steady-state for each tast run, The ambient air temperature (TC
No. 82, see Figure 7-5) was monitored at all times to ensure that the cooling air source for natu-
ral convection remained at constant temperature.

7-8
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Figure 7-7. Procedure for adjusting lamps.
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7.5 DATA ANALYSIS

7.5.1 Test Data Summary
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Results of the thermal test are listed in Tables B-43 and B-44 of Appendix B, For the
purposes of analysis, the key results (i.e., cell temperature, module backside temperature, air
temperature, and radiant energy flux) are listed in Tables 7-3 through 7~6 for modules with un-
insulated backsides and in Table 7-7 for modules with insulated backsides.

TABLE 7-3. KEY RESULTS FOR (GLASS SUPERSTRATE) MODULE TM-1

Radiant Energy Temperature, °C
Test Run | Backside Fluz, W/cm’ Center Cell Power

No. Emissivity | Num. | Actual Output, W Air | Conter Cell | Edge Cell | Backside
1 0.04 0.08 0,066 0 41.6 69.4 721 69.1
2 0,04 0.08 0.006 0.06 41,2 68.4 70.7 68.2
3 0.04 0.114 0.09 0.09 40,9 79,5 83.4 79.1
4 0.04 0.114 0,09 0 41,6 80.6 85.1 80.3
5 0.95 0.114 0.09 0 39.6 78.4 80.1 77.5
6 0.95 0.114 0.09 0,07 40.5 79.4 80.4 78.5
7 0.95 0,08 0.046 0.06 40.1 67,4 68.1 66.8
8 0.95 0.08 0.066 0 39,9 68,1 69.1 67.4

TABLE 7-4. KEY RESULTS FOR (STEEL SUBSTRATE) MODULE TM-2
Radiant Energy Temperature, °C
Test Run | Backside Flux, W/cm? Center Cell Power

No. Emissivity | Nom. Actual Output, W Air | Center Cell* | Edge Cell* | Backside
1 0.5 0.08 0.066 0 41.6 63,7 NA 651
2 0.5 0.08 0,066 0.06 412 67.4 NA 65.3
3 0.5 0.114 0.09 0.09 40,9 72.7 NA 70.8
4 0.5 0.114 0.09 0 41.6 75.6 NA 71.5
5 0.95 0.114 0.09 0 39.6 NA 69.4 70.7
6 0,95 0.114 0.09 0.07 40,5 NA 66.7 71.9
7 0.95 0,08 0.066 0.06 40,1 NA 60.7 64.3
8 0.95 0.08 0.066 0 39.9 NA 64.5 64.8

* Center cell (TC No. 91) thermocouple readings appear questionable, Switched to edge cell (TC No, 91a) after test run No. 4.
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TABLE 7-8, KEY RESULTS FOR (WOOD SUBSTRATE) MODULE TM-3

Radiant Encrgy
Flux, W/cm? Temperature, °C
Test Run | Backside Center Cell Power

No. Emissivity | Nom. | Actual Output, W Air | Center Cell | Edge Cell | Backside

1 0.9 0,08 0.066 0 40.6 74,5 74.5 68.1

2 0.9 0,08 0.066 0,06 40.9 74,5 75.6 68.7

3 0.9 0.114 0.09 0,09 399 81.8 84.5 75.6

4 0.9 0.114 0.09 0 40.2 84,3 84.8 77.3

L 0.03 0.114 0.09 0 38,7 84,2 83.9 717

6 0.03 0.114 0.09 0.06 40 84,4 85.7 78,2

7 0.03 0.08 0.066 0,06 40 72,7 74.1 68.6

[ 8 0.03 0.08 0,066 0 40.7 74.6 74.1 69.1

TABLE 7-6. KEY RESULTS FOR (WOOD SUBSTRATE) MODULE TM-4
Radiant Energy I
Flux, W/cm? Temperature, °C
Test Run | Backside Center Cell Power ‘
No. Emissivity | Nom. | Actual Output, W Air | Center Cell* | Edge Cell®* | Backside

1 0.9 0.08 0.066 0 40,6 71.3 NA 66.6

2 0.9 008 | 0066 005 409 | 476 NA 67
3 0.9 0.114 0,09 0.11 39.9 61.1 NA 75,7
4 0.9 0.114 0.09 0 40,2 83,1 NA 76.2
5 0,03 0,114 0.09 0 38.7 NA 82,9 80,1
6 0.03 0.114 0.09 0.07 4n NA 84,3 81.1
7 0.03 0.08 0.066 0.02 40 NA 71.2 68.9
8 0.03 0.08 0.066 0 40,7 NA 71.2 69.6

* Center cell thermocouple readings appear questionable. Switched to edge cell (TC No, 98a) after test run No. 4,
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7.5.2 Analytical Model

As mentioned in Section 7.3.1, the test chamber environment differed significantly from the
terrestrial environment studied in Phase 1 of the program, Consequently, the thermal/optical
model described in reference 3 was modified to represent the conditions prevailing in the test
chamber.

The thermal model used for the test chamber environment is compared with that used for the
terrestrial environment in Figure 7~9, These discrete-element models were used to determine the
temperature distribution around a centrally-located cell inside a module, The models differ in
four respects: (1) the terrestrial model accounted for the interstitial spacing between the cells
whereas the test chamber model did not;* (2) the air cooling in the terrestrial model was by
forced convection past a module inclined at 34 degrees to the local horizontal whereas the air
cooling in the test chamber model was by buoyancy-driven natural convection past a vertically-
mounted module; (3) the terrestrial model used a solar air mass 1,5 spectrum whereas the test
chamber model used the spectrum for a quartz lamp; and (4) the ground and sky served as
thermal radiation boundaries for the terrestrial model whereas the front and back panels as well
as the chamber walls served as thermal radiation boundaries for the test chamber model.

;‘rﬁ o CEILING
© FLOOR,
v’ o k.‘Q} vackh CHAMBER AIR
AIR — ° TOP )
e 80TTOM
T WOOL N
AP DOLE WOOD PANEL
v © BOTTOM GROUND
FRONT 2 S Q!
covern | 31— 0
POTTANT | @5 —— @2
CELL & Q. -y 9
OPAQUE
POTTANT
BACK
. COVER
v - » BOTTOM UNC,
v MIDOLE b WOOD PANEL »
‘ o TOP SKY.
At < BOTTOM
e e S s M| DDLE GLASS PANEL
; A ~o TOP
AR V) RIGHT WALL
3 LEFT WALL
A CEILING

». MODEL FOR TEST CHAMBER ENVIRONMENT

Figure 7~9, Thermal models for test chamber and for terrestrial environments,

* For closely-packed rectangular cells, which is the geometry under study here, the presence of the small interstitial
space between cells has a negligible effect on cell temperature,
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For the test chamber model, the radiant energy absorbed in the layers of the encapsulation
system are indicated by Q's in Figure 7-9, Values of Qy, Qs, and Q, were determined by the
method outlined in Section 5 of reference 3, Note that since the model for the test chamber
environment does not account for the small interstitial spacing between cells, values of Q’), Q'3
and Q’, were not required for correlating test data>

Temperatures were calculated at a number of points inside and on the surface of the module
in both models; these points (nodes) are represented by large black dots in Figure 7-9, The large
dots external to the module represent constant temperature boundaries,

The nodes are connected by a network of heat flow paths, which are shown as resistors in
Figure 7-9, Each path represents a finite “resistance” to heat flow in the models, As mentioned
in Section 6,2,2 of reference 3, absorption-reradiation phenomena in the encapsulation system
are ignored, and heat flow inside the module is therefore by conduction only. The conduction re-
sistance between adjacent nodes i and j is given by

Ij
-— 7-1
where I is the distance between nodes, k is the thermal conductivity, and A is the cross-sectional
area for conductive heat flow,

Air motion (convection) past the module surfaces helps to remove the incident solar radiation
absorbed as heat, The thermal resistance to this convective heat flow from the surface to air is
given by

RQ-!!: - 1/ (hA) (7"2)

where h is the convective heat transfer coefficient and A is the cross-sectional area for convective
heat flow, The following relation 5] is used to calculate h for natural convection:

-—hi‘L—- = C(GrPr)"

where:

g 3 (TI - Tuir) Lj
l‘!

Gr = Grasho! number =

= Prandt| number = 0,72 for air

= gravity = 980 cm/sec’

= volumetric thermal expansion coefficient of air, °C
= vertical length of minimodule, cm

module surface temperature, °C

= kinematic viscosity of air, cm?®/sec

- 0.59l 9
= 0.25 | for GrPr < 10

- 01 |
= (0,33}

hal |

3030::’!"%@:’
K

for GrPr > 10°



The module surfaces radiate to the ground and sky in the terrestrial environment and to the
frort and back panels and chamber walls in the test environment, The thermal resistance to
ritic - heat transfer between a module surface node and a radiation boundary is given by

Ry-p™ (Aﬂ 'g.l - h)—‘ (7-—4)

where ¢ is the Stefan-Boltzman constant, A is the area for radiative heat flow, and &, -  is the
radiative interchange factor (script-F). The radiative interchange factor is that portion of the
radiant energy emitted from surface s that is absorbed at boundary b. Note that the units of
Equations (7-1) and (7-2) are °C/w and that the units of Equation (7-4) are °K*/w. The
thermal resistances are input to the thermal analyzer program in this way. Further discussion
follows later in this section,

The script-F’s, which were complex functions of the geometry and surface emissivities of the
test set-up, were determined by means of the RENO computer program.* The surface emissivi-
ties and the script-F’s used in the analyses presented here are listed in Tables 7-8 and 7-9,
respectively, Note that the script-F’s for test runs i-4 differed from those for test runs 5-8. This
difference was due to the change in module backside emissivities between runs 4 and 5. All
surfaces in the test set-up were treated as grey bodies.

TABLE 7-&. SURFACE EMISSIVITIES
FOR THERMAL TEST

Surface Emissivity
Front Glass Panel 0.8
Back Wood Panel 0.9
(black-painted)
Chamber Walls 0.09
(dimpled aluminum)
Black Tape 0.95
Silver Tape 0.03
Aluminized Mylar 0.04

* The RENO program was originally developed by the Aerojet-General Corporation. Turner Associates, who
upgraded the Aerojet software, now maintains exclusive rights to its usage at Hughes under a license agreement,

7-16
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The spectrum of the quartz Inmps was taken to be that of a black body operating at 2230°K,
The ordinate of the corresponding blackbody curve was adjusted so that the area under the curve
was the same as the flux measured by the pyranometer. Following the computationa! sequence
outlined in Section 6.3 of reference 3, this spectrum was divided into twenty equal-energy
intervals which correspond to twenty wavelength bands of unequal size, These intervals are listed
in Table 7-10. Optical prope-ties were evaluated at the midpoint of each wavelength band. The
energy absorbed in the cell an'' in each layer of the encapsulation system (Q,, Qi Qo) is
evitluated for each wavelength bane and summed over all bands. These values of Qy, Qu, and Q.
ace then input to the thermal mode! to ealeulate the corresponding temperatares,

TABLE 7~10. EQ'/AL ENERGY WAVELENGTH
BANDS FOR QUAKRTZ LAMPS*® USED DURING
THERMAL TEST

Wavdﬁué(h Band, um
Energy U S —|
Interval Endpoints Midpoint
o 0.3, 08¢ 0.58
» 0.80, 0.98 0.92
) 0.98, 1.10 1.04
4 1.10, .20 LS
b 1,20, 1.2 1,26
b 1.32, 1.8 1.35
7 138, 1.54 140
1.54, 1,58 1.560
9 1,58, 1.76 1.67
10 .70, 1.82 1.79
1 1.82, 2.02 1.92
12 2.02, 2,10 2.06
13 210, 236 223
14 236, 248 242
15 2.48, 284 2,60
16 2.84, 3.00 2.92
1?7 J.00, 3.08 334
18 J.08, 4.20 3,04
19 4.20, 5.94 5,07
20 5.94, 9.58 .70
* Opermed w4 rmcd gsimge T
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72.5.3 Results

Measured and predicted cell temperatures for test runs 1, o, 5, and 8 are listed i Table 7=
L1 These vesults are for those tests performed s open eireui, conditions, The pawer conversion
efliciencies of the cells used in these modules weve approxmately 2.5 pereent, and there was little
overlap between the cell response curves and the spectram of the quartz lamps. Thus, the cell
temperatare was not éxpected to difler significantly between open circuit and the maximum
pon er generanon vonditions. “Uhis expectation was confivmed during the test (after adjusting for
differences in e temperature); henee only predictions for open cireuit conditions are reported
here,

The average wir speed between the glass and wood panels was found to be approximately
0.2 meter gee. However, speed “pulses™ were observed to oceur about every 2 to ) minutes; the
maximum air speed durving these pulses was about Q.4 meter see,

The pyranometer readings indicated that the nominal fluxes of 0,08 and 0.114 Wsem® were
obtained along the dividing line between modules TM=2 and TM-3. However, the pyrheliom=
eter readings indicated that the flux decreased by as much as 20 percent in going from the
pyranometer to the spaces begweet inodules TM-1 and TM=2 and between modules TM=3 and
TM-A. Hence, the incident radiant energy fluxes used in the predictions corvespond to those
measured at positions B and B in Figure B=15 of Appendix B. This nonuniformity in radiant
energy flux may be the veason for the 110 3°C difference between measured center cell and edge
cell temperatures.

A comparison between predicted and measured cell temperature indicates that

L. The thermal, optical model overestinimes the cell temperature

2. The thermal optical model shows best agreement for those situations where the module
had a high cmissivity back cover,

7.6 DISCUSSION

As mentioned above, the thermal maodel overpredicts the cell temyperature, The two most
probable causes of the overpredictions ave the low value of emissivivy (0.09) assumed for the
chamber walls and a lateral temperature gradient in the glass front panel,

The emissivity of the chamber walls was probably closer 1o 0.2 @ value commonly used for
the aluminum skin of an aireraft) than 0,09 A higher villue of emissivity would lead o Jager
values for the seriptF terms from the modules o the chamber walls and therefore to a higher
prediction of radiant heat transfer from the modules o the chamber walls,

Although there were insufficient thermocouples to measure the luteral temperature differ-
ences in the front panel, the drop-off in radinnt energy Qux from the centerline of the test
apparatus implies that the temperature in the glass panel deereased with distance from the
centerline as well.

The measured cell temperatures in excess of the ambient air temperature for the present tests
were about 15 to 0°C higher than those reported by Namkoong and Simons [11] for four
different module designs operating in an outdoor environment. This difference is not surprising
in that the outdoor environment is characterized by cooler radiation boundaries and forced
conveetion cooling due to winds.

In tese run No. 10, the modules were instlaizd such that none or very little of the absorbed
radiant energy could be removed by convection and radintion from the module backsides, ‘This
comfiguration is typical of rool-top applications, Measured cell temperatures lor this test fun are
listed in Table 7=12, which indicates that the cell temperatures for the insulated modules were
about 5 o 1180 higher than those Tor the umnsulated mosdules. The cell temperatures in excess
of the wmbient air temperature ompare with Namkoong's and Simon's data {or insulated
modules operating in an ourdoor environment {11},



iS5

OF POOR QUALITY

I
3

g

I

ORIGINAL PAG

YINL PUR "L LN Sojnpows o saamesaduisy (po 38 1o [enuas 24r jo 234y sy st aamesxduy 2 panseay D108

rmyesadwsy [jay 1350y §

Do .uuamuumauﬁ ‘

¥ 'ON UL 1531 BYE []20 38p3 a1 papimg [0 1amac 3) Buipeas adnwout sjqeucnsangy
808 clL A YA YL 89 S'$9 +'69 1°69 800 8
I't6 6C8 L'C6 ¥8 6L +°69 08 1°08 +11°0 S
1’68 «1'E8 88 €8 8 «9°CL €6 1cg ¥11°0 14
L9l o£1L 8'cL S¥vL ¥eL 2 €9 c_L 1¢CL 800 I
PORIPIA | NS | PURIPAI] | PSRN | p301pasg | paansedjy | paripalg | sparnseapy | (uwa/m) | on
N:E, -:J—
JewtwoN | IS,
(poom) SNL (poom) ENL (13918) ZINL (sse19) TNL

SIUNLVHIdNIL 1133 0310i03Ud OGNV G3HNSYIW 40 NOSIHVYJWO0D “LL—-L 319YL




TABLE 7-12. MEASURED CELL TEMPERATURES FOR MODULES
WITH INSULATED BACKSIDES

Test Module Mo,

Description

Celi Tcmpcntiufe. °C

Uninsulated

Insulsted

T™M-1

T™M-2

TM-=-3

TM-4

Glass Superstrate
Front Cover: 125 mil glass
Pouant: 18 mil EVA/Craneglas
Back Cover: Black tape

Mild Steel Substrate
Front Cover: 3 mil Tedlar
Pottant: 18 mil EVA/Craneglas
Substrate: 200 mil steel
Back Cover: Silver tape

Wood Substrate
Front Cover: 3 mil Tedlar
Pottant: 18 mil EVA/Craneglas
Substrate: 125 mil wood
Back Cover: Silver tape

Wood Substrate
Front Cover: 3 mil Tedlar
Pottant; 36 mil EVA/Craneglas
Substrate: 125 mil wood
Back Cover: Silver tape

66.1

*63.4°

76.1

72,6

77.6

70.2*

Environmental Conditions;

{1} Incident radiant energy fux 5% 0.0656 W- om?
{2) Air temperature 3% 4070

{3) From (glass) panel temperatures = 52°C, 58°C, 69°C
(4) Chamber wall temperature = 41*C

{5) Chamber oor temperature = 44°C

(6) Air speed & 0.2 mever ser

* Thermocouple reading is doubtful
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APPENDIX A,

A.1 OPTICAL TEST EQUIPMENT

TEST EQUIPMENT INFORMATION

A.1.1 Equipment Description, Test Function, and Nameplate Data
The test equipment and support instrumentation used in the optical test are listed in

Table A-1,
TABLE A—~1, TEST EQUIPMENT AND SUPPORT INSTRUMENTATION
USED IN OPTICAL TESTS
Item
No. Description Test Function Nameplate Data

1 Xenon illumination
source

2 | Standard cell

3 | Tungsten illumination
source

4 | Standard cell

5 | Color temperature
meter

6 | Automatic load
adjustment

7 | Thermocouples (copper/
constantan, 30 gauge)

8 | Digital temperature
readout

Radiant energy source

Calibration of xenon source

Radiant energy source

Calibration of tungsten source

Set-point instrumentation for
tungsten source

Set voltage across terminals
of solar cell

Measure temperatures of
cooling fixture and solar
cell

Convert voltage output
from thermocouples to
temperature units

Spectrosun Model No. 1206
Spectrolab, Inc.
Sylmar, Calif,

Standard Cell No. 1039
Spectrolab, Inc.
Sylmar, Calil.

Tungsten Solar Simulator, SN2
Spectrolab, Inc,
Sylmar, Calif.

Standard Cell No, 1-3
Spectrolab, Inc.
Sylmar, Calif.

Heliotek Color Temperature Meter
Model HTA 159, Serial No. 122
Spectrolab, Inc.

Sylmar, Calif,

Electronic Load Model 279-1, SN2
Spectrolab, Inc,
Sylmar, Calif.

Fabricated at Hughes Aircraft Co.

Model 2176A Digital Thermometer
Serial No, 1860054

John Fluke Mfg. Co.

Burbank, Calif.
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A.1.2 Calibration Data

Calibrated photovoltaic cells were used to determine the radiaznt energy fluxes in the
illumination sources. Swndard cell 1039 was used for adjusting the xenon source; the current
versus voltage characteristics of this cell, for an energy flux of 0,135 W/em? (i.e. air mass zero)
are shown in Figure A=1. Standard cell I-3 was used for determining the energy flux in the
tungsten source; this cell was accidentally broken at conclusion of the optical tests and is no
longer available, The dimensions of standard cell 1039 are 0.25 inch X 0.25 inch, and the
dimensions of standard cell 1-3 were 2,1 inch X 2.1 iuch,

Each of the cells was inserted in a vacuum chuck aud placed in the beam of each source, For
the »enon source, the power to the lamp was adjusted such that cell 1039 produced a short-circuit
current of 65 mA, The aceuracy of this setting is %2 percent. For the tungsten source, the power
to the lamp was set to yield a color temperature at 2700°K (measured with a color temperature
meter—see item 5, Table A=1). The vertical distance of the lamp above the vacuum chuck was
then adjusted until the short cireuit current produced by cell 1-3 was 903 mA, which corresponds
to a radiant energy flux of 0,100 W/cm’,

A.2 ELECTRICAL TEST EQUIPMENT

A.2,1 Equipment Description, Test Function, and Nameplate Data

A hipot ester was used to measure breakdown voltage and leakage current through the test
coupons. Nameplate data for the hipot tester are listed below:

Model HD 125 AG/DGC Hipot Tester
Hiptronics, Ine,
Brewster, N.Y.
A.2.2 Calibration Data
Calibration data were not required for these measurements,

A.3 THERMAL STRUCTURAL YEST EQUIPMENT

A.3.1 Equipment Descripvion, Test Function, and Name-plate Data

The test equipment and support instrumentation used in the thermal structural test are listed
in Table A-2.

A.3.2 Calibration Data

The readings obtained from the strain indicator (item 10, Table A-2) must be corrected to
obtain the actual strains experienced by the test specimens, This correction is made by means of
the following relation:

indicated gage factor )

actual strain = indicated strain ( -
actual gage factor

The indicated gage factor in these tests was 1,99, The actual gage factors decrease with
increasing tempcrmurc for each strain gage type as shown in Figures A-2 through A-5,
Information on item 2 of Table A~2 has been misplaced. A standard resistor (item 12, Ta-
ble A~2) was used 1o check calibration of the strain indicator during the test.
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A4 STRUCTURAL DEFLECTION TEST EQUIPMENT

A.4.1 Equipment Description, Test Function, and Nameplate Data

The test equipment and support instrumentation used in the structural deflection test are
iisted in Table A-3.

A 4.2 Calibration Data

Calibravon data for the strain gages (item 1, Table A-3) are shown in Figure A-6. A
standard resistor (1tem 4, Table A-3) was used to check calibration of the strain indicator (item
2, Table A-3) during the test,
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A.5 THERMAL TEST EQUIPMENT

A.5.1 Equipment Description, Test Function, and Nameplate Data

The test equipment and support instrumentation used in the thermal test are listed in
Table A-4.

A.5.2 Calibration Data

The pyrheliometer (item 1, Table A-4) and the pyranometer (item 2, Table A-4) were used
to measure the radiant energy flux in the plane of the test modules. The conversion constants are
0.0184 W em ™" mV ™' and 00092 W em™* mV™' for the pyrheliometer and pyranomeier,
respectively. ‘(he accuracies of these instruments are + 3 percent and =1 percent, respectively,
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APPENDIX B. RAW DATA

B.1 OPTICAL TEST DATA

Raw data for the optical test consist of the followizg items, which were measared for all
photovoltaic cells used in the specimens. Data were obtained for both xenon and tungsten
illumination sources:

1. Open-circuit voltage before encapsulation

2. Open-circuit voltage after encapsulation

3. Short-circuit current before encapsulation

4. Short-circuit current after encapsulation

5. Cell cun “ent at 500 mv before encapsylation
6. Cell current at 500 mv after encapsulation

These data are listed in Table B-1.
In a second series of tests, cardboard frames were used o permit illumination of the cells

only. These tests were performed for both xenon and tungsten sources, and the data are listed in
Table B-2.
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8.2 ELECTRICAL ISOLATION TEST DATA

Raw data for the electrical isolation test consist of electrical breakdown voltage and current
for 25 samples each of four types of test coupons. Data were obtained for both sides of each
sample. These data are listed in Tables B-3 through B-6.

TABLE B-3. ELECTRICAL ISOLATION TEST DATA FOR COUPON TYPE A

Front Side Back Side
Breakdown Conditions kY at 1 4A Brrakdown Conditions AV at 1 4A
| Goon ID | Voltage, kV | Current uA | Leakage Current | Voliage, kV | Current, uA | Leakage Current
-1 19 10.5 ) 80 5

A-. 18 14.5 5 8 1.3 7
A-3 17 320 ) ? 1.0 0
A-9 14 7.5 5 9 1.2 ?
A-10 14 10.5 4 1 2.0 0
A-11 15 1.0 Kl 1.5 7
A-12 19 20.0 K 9 11.0 9
A-13 12 8.0 4 1.0 5
A-14 15 19.0 4 9 2.5 5
A-15 19 25.0 3 10 30 6
A-106 18 22.% 4 9 1.0 8
A-17 10 70 “ 1 — -
A-18 13 27.0 3 3 20 3
A-19 17 240 3 0 L3 o
A-20 12 22.0 3 1 - -
A-21 10 7.0 3 O 1.0 5
A-22 17 230 i 2 — -
A-23 16 20.0 3 8 1.5 5
A-24 18 310 + 8 1.8 0
A-25 17 320 3 7 i.0 0
A-20 15 23.0 3 2 - -
A-27 1?7 290 3 10 2.2 5

Total coupons = 22

\verage breakdown voltage = 156 KV (front), 6.8 K\ (back)

Standard deviavon for breakdown voliage = 2.8 kV (front). 3.1 KV (back)
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TABLE B-4. ELECTRICAL ISOLAT'ON TEST DATA FOR COUPON TYPE B

Fromt Side Back Side =
Breakdown Conditions AV at 1 A Breakdown Conditions AV at 1 kA
Coupon 1D | Voltage, kV | Current, uA | Leakage Current | Voltage, KV | Current, uA | Leakage Current

B 13 W0 2 N 12 0
B-2 12 195 { 5 04 —-
B3 I8 4o 2 9 13 7
B 14 280 - o 08 -
B5 17 350 ) 7 0.5 -
Bo 15 280 3 9 10 N
B 15 280 2 7 07 -
B-8 15 260 3 9 10 N
B 17 Mo ] 10 1.2 b
B0 15 190 3 D) 10 8
B-11 19 240 ] 12 15 9
B-12 15 190 3 ~ 09 -
B13 17 200 il ? 0.0 -
B4 15 19.0 3 8 07 -
B-15 15 20 3 9 09 .
B-1o 15 190 3 12 1.5 9
B-17 12 170 P4 9 08

BoIs 1?7 o 3 13 1.2 10
B-19 15 100 2 7 0.0 -

B 20 13 240 - 10 1.2 0
B-21 16 5.0 3 9 09 -
B-22 13 320 2 5 05 -
B-23 17 450 4 10 1.2 8

Lol “oupons = 23

Wwerage breakdown voltage = 15 2 KV (front), 8.0 KV (back)
Standard deviation for breakdown voltage = 19 k\ (front). 21 KV (back)
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TABLE B-5. ELECTRICAL ISOLATION TEST DATA FOR COUPON TYPE C

Front Sude Back Sude
Breakdown Conditions AV at 1 WA Breakdown Conditions AV at 1 wA
Coupon 1D | Voltage, kV | Current, uA | Leakage Current | Voltage, KV | Current, uA | Leakage Curvent
ol £ 20 \ 25 ‘o n
C-2 1 210 \ F o0 15
C-4 15 200 \ 25 1o 14
C-S IN 400 ) 25 100 1
C.? 1o 450 3 23 40 1
o8 14 V7.8 ) 2! 48 1
C-9 15 Mo L 21 05 11
1o 1o 50 A 25°¢ LEY 1
Can 1?7 o | \ 19 10 1?7
C-12 17 430 \ 22 9.0 1
C-1) 12 20 \ 25 7.5 0
Col4 21 430 3 19 40 I
Cas 1o 20 \ a3 7.2 ]
Colo 15 20 il 25 70 1o
C-1? 15 wo \ 25 100 0
C-IR 15 410 8 100 11
C-19 O ol 3 2 80 I
C-20 9 170 \ b4} 100 12
C-21 9 i A 20 hy 13
C-22 9 o0 A 24 120 12
C-2) 1 27.0 \ 24 80 14
¢ ? 05 A 0 20 14
C-28 12 150 A 2) RO 12
C-2¢0 10 27.0 ) a3 0 12
C-27 5 AN | A 25 85 12
C-28 13 23.2 A a5 105 11
C-29 12 17.5 3 0 [ W 4
¢ 15 2.2 3 ) V0 4
-3 15 420 A) 20 40 1)
c-32 12 | 1o \ 28¢ 100 10
C-)) ! 11 ll 205 A 23 (O 1

Towl coupons = 1}
Wwerage breakdown voltage = 1V YRV (fron), 22 VRV (bhack)
Standard devianon for breakdown voliage = Yo KV (front), 4 2 KV (back)

*No breakdown - these samples were included ac 25 KV for staustical purposes
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TABLE B-6. ELECTRICAL ISOLATION TEST DATA FOR COUPON TYPE D

Front Sude** Back Sude
Breakdown Conditions AV at 1 WA Breakdown Conditions AV at 1 kA
Coupon 1D | Voltage, KV | Current, uA | Leakage Current | Voltage, bV | Current, 4A | Leakage Current
Do 1 00 “JEE 250 23 7
D-2 23° 1o 0 23 - & IN
D3 i2 o 7 25* 2.3 14
Do 1o 120 0 25 oo MU
D5 1? 105 7 g a0 15
Do 14 05 7 25¢ 58 15
Do 1 135 5 32 125 10
Do 14 b 0 22 o 1"
Do 1} 7.5 b M T O
D 1o 9.2 0 A ) 0 9
Dol Y I 8 7 M 142 N
D14 I8 1.5 O 23° .5 1
DS 22 IS0 7 a3 7.5 1
Dlo <l 170 7 25¢ 105 9
Dz 10 1o 0 28 130 9
D8 {7 IS0 O AL} 150 7
D1 I8 105 O e 58 1\
D20 15 0 O . 80 1
| D2 I8 1o o 28¢ 100 "
D-22 33 M40 0 2) 1o 0
D23 1o a8 0 4. 1.5 11
D 2o 32 102 N M 58 15
D-2? 1o A8 10 25° 1.3 10
1 D-28 ¥ | 133 N 3" L) 1
- .20 e \S N M 05 Y
| [AERTY 2l | 110 N M S8 1
——— - ' — -
[ Towl coupons = 20
Vverage breakdown voltage = I8 1KV (hone with Craneglas) 15 8 KV (lrone withowt Craneglas) 4 KV (haok)
hack!

I Standard devianon tor breakdown voltage = V7 KV (frone, with Craneglas), 4 O KV (lront without Craneglas), 1 2 K\
1
|

*No hreakdown

these samples were included ae 25 K\ for stanstical purposes

**Coupons Db through Do and D9 through D12 were fabncated with Craneglas in the frone pottant laver No coupons
t had Craneglas i the back pottam Lver

B




8.3 THERMAL STRUCTURAL TEST DATA

Raw data tor the thermal structural test consist of temperature and biaxial stram (e stram
measured along  perpendicular axes) measurements obtaned with the coupons histed 1n
Fable 5.3 and with samples of plamn sieel, glass, silicon, and aluminum. For each coupon,
temperature measurements were recorded for the sibicon cell as weil as the underlving structural
material

he plan sihicon samples were approximately four inches square, and the plain steel, glass,
and alumimum samples were approximately five inches square. Stramn versus temperature data
obtained from these samples were used 0 caleulate “apparent” stramn curves which were then
used in subsequent stram caleulavions for the test coupons. The strain data for the plan samples
are shown in Tables B-7 through B-11

Stramn data tor the coupons are shown in Tables B-12 through B- 23 for the normal test
sequence. Stran data tor overstress tests are showen in Tables B- 24 through B- 2o

Phermal structural test measurements were begun on 1 July 1981 and completed on
14 July 1981

B8



TABLE B-7 PLAIN GLASS AND PLAIN STEEL APPARENT
STRAIN DATA (HEATING)

Stramn, winch inch
Temperature, °C Glass Steel
Date Time Glass Steel Ch. 7 Ch. 8 Chot Ch. 2
' /81 210 a3 23 + 0007 0000 | 40000 | = 0003
17181 229 40 41 =10 -6 + 08 “+ ol
7181 230 4 41 -2% - 20 + 54 + 44
7/1/81 2:38 40 40 -5 -0 + 44 + 40
7/1/81 AR ol ol -§1 ~ 40 +904 +92
7/1/81 100 ol 50 - 03 -42 + RO 403
771 81 VA0 8l 80 =50 - 18 + 189 + 200
7/1/81 Mo 80 79 - 45 -13 + 190 +193%
7/1/81 AL 80 79 -4 - 12 + 191 + 200
7181 412 101 100 -97 -53 +226 + 244
71 81 4.20° 101 0 - 102 -5 + 221 + 236
7181 4.50* 122 119 =109 - 112 + 245 +262
7/1/81 455 122 L 120 - 162 = 100 + 247 + 203
o 1
*Pressed “zero chech” about six times
Notes (1) Stramn gaes informaton
Crage type WK 00 250N 350 WK 00-250TM- 350

Sed

1 gage factor
Sec 2 wage lactor

199 (Chan

™

1 89 (Chan 8)

(M Indicated gage factor = 199

199 (Chan. 1)
i 80 (Chun )

(1) Test performed by | Pimentel, R Huebschen, and D Gallaspy

B.o




TABLE B-8. PLAIN SILICON AND PLAIN ALUMINUM APPARENT
STRAIN DATA (HEATING)

Strain, uinch/inch
Temperature, °C Silicon Aluminum

Date Time | Silicon | Aluminum | Ch.5 | Ch.6 | Ch.3 | Ch. 4
7/1/81 2:10 23 23 0000 | =0005 | 40004 | +0003
7/1/81 2:25 41 41 +20 +51 +53 +39
7/1/81 2:30 41 41 +4 +27 + 38 +26
7/1/81 2:35 40 40 +5 +18 +40 +34
7/1/81 3:00 60 59 +15 +55 +89 +51
7/1/81 3.05 60 59 +22 +51 +83 +54
7/1/81 3:30* 82 79 +79 +151 +177 +125
7/1/81 3:36 80 78 +81 +155% + 185 +128
7/1/81 3:40 81 78 +85 +154 +183 +131
7/1/81 4:12% 102 99 +77 +218 +213 +139
7/1/81 4:20* 101 99 +68 +220 + 206 +135
7/1/81 4:50* 122 118 +50 +277 +220 +129
7/1/81 $:55° 124 120 +55 +276 +221 +133

*Pressed “zero check” about six umes

Notes: (1) Strain gage information
Item Silicon Aluminum
Gage ype WK-03-250TM-350 WK-13-250TM-350
Sec. 1 gage factor 1.96 (Chan. 5) 2.17 (Chan. 3)
Sec. 2 gage factor 1.88 (Chan. 0) 2.02 (Chan. 4)

(2) Indicated gage factor = 1.99

(3) Test performed by J. Pimentel, R. Huebschen, and D. Gillaspy




TABLE B-9. PLAIN STEEL AND PLAIN ALUMINUM APPARENT
STRAIN DATA FOR HEATING AND COOLING

Strain, winch/inch
Temperature, °C Steel Aluminum
Date Time Steel | Aluminum | Ch.1 | Ch.2 | Ch.3 | Ch. 4
7281 | 10:30 20 20 =0003 | =0003 | +0003 | =-0007
7/2/81 | 10:45 59 59 76 920 81 39
7/2/81 | 11:00 60 60 68 80 77 3o
7/2/81 | 11:30 100 100 147 162 136 53
7/2/81 | 11:35 100 100 144 161 134 54
7/2/81 | 12:30 139 39 166 202 155 37
7/2/81 | 12:40 139 139 168 201 156 37
7/2/81 | 12:55 118 118 161 183 158 53
7/2/81 1:00 120 120 162 189 158 51
7/2/81 1:15 100 100 146 162 140 59
7/2/81 1:20 100 100 138 153 134 53
7/2/81 1:35 80 80 116 128 118 53
7/2/81 1:45 80 80 116 124 122 53
7/2/81 1:52 59 60 73 78 93 39
7/2/81 2:00 60 60 64 75 82 37
7/2/81 2:15 42 42 29 35 49 21
7/2/81 425 42 42 +35 +43 +59 +2)
7/2/81 2:47 21 21 —-18 -3 =05 ot
7/2/81 2:55 21 22 =11 ' =03 -12
7/2/81 3:20 - - -122 - 134 - 102 -9
7/2/81 3:25 0 0 =95 -=103 =15 =70
7,/2/81 3:36 =19 -20 - 180 199 i 7 —148
7/2/81 3:45 -20 -20 -197 -211 =180 o156
7/2/81 4:00 —40 —40 =307 -323 — 2806 —248
7/2/81 4:15 —41 —41 -322 ] —=314 -T2
7,/2/81 420 =60 =60 =463 -—493 - 462 - 398
7/2/81 4:30 =60 =00 | =491 —=510 — 488 -—423

(Continued next page)




TABLE B-9. PLAIN STEEL AND PLAIN ALUMINUM APPARENT
STRAIN DATA FOR HEATING AND COOLING (Concluded)

Strain, winch/inch

Temperature, °C Steel Aluminum
Date Time Steel | Aluminum | Ch.1 | Ch.2  Ch.3 | Ch 4
2/81 4:40 -4 - 41 -3e2 - 343 - 320 -2
2/81 445 - 20 -20 - 180 - 199 - 174 - 145
2/81 451 0 -2 -97 =106 -84 =76
0 81 850 22 22 +14 +04 +02 =05
s
Notes: (1) Strain gage information
ltem Sieel Aluminum
Gage type WK-00-250TM- 350 WK-13-250TM-350

Sec. 1 gage factor
Sec. 2 gage factor

1.99 (Chan. 1)
1.89 (Chan. 2)

(2) Indicated gage factor = 199

(3) Test performed by | Pimentel, R. Huebschen, and D. Gillaspy

217 (Chan. 3)
202 (Chan. 4




TABLE B-10. PLAIN §

TEEL AND PLAIN GLASS APPARENT

STRAIN DATA FOR HEATING AND COCLING
S Strain, winch,inch
Temperature, °C Silicon Glass
| Date | Time |Silicon| Glaw | Ch.5 | Ch6 | Ch7 | Ch.8
7281 | 10:00 20 20 ~0001 | #0001 | =0005 0000
7 2/81 | 1045 ol ol + 0007 05 -62 -4
7.2/81 1100 ol ol + 0007 48 -062 - 44
7281 | 1130 104 102 + 0004 128 -178 - {29
7/2/81 11:35 103 102 +7 134 - 170 - 126
728 1220 145 142 -8 + 23 - 312 -239
7281 | 1240 140 143 -82 +235 =3o - 241
7/3/81 12:58 125 122 -27 190 - 231 - 172
7./2/81 1.00 127 123 -27 + 195 -241 - 178
7/2/81 115 100 102 04 + 143 -157 - 114
7:2/81 1.20 104 101 - 00 + 134 =10} -118
7/2/81 1:35 RO 82 +11 +110 -112 -74
7.2/8% 1:45 54 82 +09 + 103 =110 -76
7/2/81 1:52 05 ol + 00 + 0l =00 - 3
7/2/81 LY 05 ol -2 +03 - 74 -S54
7/2/81 2:15 45 42 — 04 +21 - 33 -23
7/2/81 2:2% 45 42 - 04 +28 - 31 -20
7/2/81 247 22 21 -23 > -(7 -16
7/2/81 2:55 22 22 21 -3) -07 - 18
7/2/81% 320 | -5 - 65 - 130 -1 - 31
7/2/81 3:25 \ 0 - 52 -118 -(07 -2%
7/2/81 3 3o - 18 - 20 - 120 -211 - 30 - 04
7281 345 -20 -22 - |29 -221 -35 -65
7/2/81 400 -39 - 41 -211 - 342 -83 - 118
| 7/2/81 | 415 —41 ~43 =230 =300 -95 | =131
| 7/2/81 4.20 - 00 -62 - 351 - 543 - 104 -214 |
; 7/2/81 430 - 08 - 04 - 304 -017 k ‘l‘).\\ - 241 !
L W——
(Continued next page’
B-13
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TABLE B-10. PLAIN STEEL AND PLAIN GLASS APPARENT
STRAIN DATA FOR HCATING AND COOLING (Concluded)

B Strain, uinch /in.h
Temperature, °C Silicon Glass
Date | Time | Silicon Glass Ch.5  Ch6 | Ch7 | Ch8
7281 440 -4 -~ 41 - 231 - 385 - 88 - 127
1.2'81 445 | - 20 -1V - 126 -236 - 30 =060
173/} 4:51 +2 +1 -38 - 142 =04 -3
‘ 70 81 8.50 20 20 -§7 ot | +11 +19

Notes (1) Strain gage information

lem

Gage tvpe
Sec | gage lactor
Sec. ) gage factor

Steel

WR-03-250TN- 350
1.90 (Chan. 5
1 88 (Chan o)

Aluminum
WK -00-250TM - 350

1.99 (Chan ™)
1.89 (Chan B)

JUUR———

(2) Indicarcd gage factor = 199

(3 Test performed by | Pimentel, R Huebschen, and D Gillaspy
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TABLE B-11. PLAIN SILICON AND PLAIN ALUMINUM APPARENT

STRAIN DATA FOR (IEATING AND COOLING

Strain, winch/inch
Temperature, °C Silicon Aluminum

Date Time | Silicon | Aluminum | Ch.1 | Ch.2 | Ch.3 | Ch 4
713/81 | 300 24 24 +03 +07 +06 =01
T13/81 | 315 40 40 +36 +40 +46 +30
71381 | 318 40 40 +32 +35 +46 +24
71381 | 325 60 00 +42 +50 +80 +47
713/81 1 330 60 60 +38 +46 +81 +36
7/13/81 | 345 80 80 +27 +48 | +118 +44
7/13/81 | 355 80 80 +19 +38 | +113 +43
7/13/81 | 410 100 100 +17 +48 | +126 +37
71381 | 420 100 100 +09 +46 | +125 +36
7/13/81 | 436 120 120 +05 +48 | +133 +29
7/13/81 | 450 120 120 +07 +48 | +125 +22
7/13/81 | 4:58 100 100 +08 +42 | +127 +38
7/14/81 | 8:40 100 100 +11 +49 | +126 +38
7/14/81 | 8:50 80 80 +03 +24 | +104 +41
714/81 | 9:00 80 80 +06 +24 | +108 +43
71481 | 910 60 60 -09 -07 +85 +37
7/14/81 | 9:25 60 60 -09 -07 +90 +38
7/14/81 | 9:55 41 41 -36 —45 +43 +22
71481 | 10:00 40 40 - 36 —45 | +41 +17

14/81 | 10:20 20 20 -82 | =100 | -0 -21

14/81 | 10:25 20 20 -79 -96 -05 -19
7/14/81 | 10:35 0 0 -162 | =171 —88 -76
714,81 | 10:45 0 0 -154 | =163 -85 -78
71481 | 11:00 -20 =20 -240 | =265 | =194 | =160
71481 | 11:10 -20 -20 =239 | =263 | =191 | =158
7/14/81 | 11:17 -40 -40 ~349 | =383 | =318 | =265
7/14/81 | 11:25 —40 - 40 —347 | =380 | =320 | =208 l
7/14/81 | 11:35 - 60 - 60 - 470 - 538 —473 -402
71481 | 11:40 =60 =60 | =480 | =530 | =472 | =403

] J

B-15
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TABLE B-11. PLAIN SILICON AND PLAIN ALUMINUM APPARENT

STRAIN DATA FOR HEATING AND COOLING (Concluded)

Strain, winch/inch
Temperature, °C Silicon Aluminum
Date Time | Silicon | Aluminum | Ch.1 | Ch.2 | Ch. 3 | Ch 4
7/14/81 | 11:50 - 40 - 40 - 340 - 384 -312 -259
7/14/81 | 11:55 - 40 - 40 -339 - 385 -317 - 265
7/14/81 | 12:10 =20 -20 -227 - 262 - 182 - 152
7/14/81 | 12:25 =20 -20 =225 | =299 -184 | —=154
7/14/81 1:05 0 0 -124 - 147 - 86 -74
7/14/81 1:10 0 0 -117 -139 -85 -74
7/14/81 1:30 20 20 -3 =50 -19 =20
7/14/81 1:35 20 20 -3 -84 -1 -2
7/14/81 1:40 22 22 -7 -34 -29 -21
7/14/81 1:45 22 22 =09 -21 =006 -10
Notes: (1) Strain gage information
liem Silicon Aluminum
Grage vpe WR-03-250TN-350 WK-13-250TN - 350
Sec. | gage facior 1.96 (Chan. 1) 2.17 (Chan. 3)
Sec. 2 gage facor 1.88 (Chan. 2) 2.02 (Chan. 4)

(2) Indicated gage factor = |99

(3) Test performed by | Pimentel. R. Huebschen. and D. Gillaspy




TABLE B-12. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-1 NORMAL TEST

Strain, winch/inch
Temperature, °C Silicon Aluminum

Date Time | Silicon  Aluminum | Ch.1 | Ch.2  Ch 3 | Ch 4
710 81 92:15 2?7 2?7 =04 -08 =00 =04
T 1081 9.20 40 40 +10 +18 -22 - 10
710 81 9:30 40 40 + 006 +12 -20 wdi [
71081 | 9:50 o0 60 +15 + 3o -7 —48
71081 9:55 00 o0 +15 +39 -71 - 49
710 81 | 10:30 L 80 +4 +41 - 128 -9$
7 10781 | 10:40 80 80 -2 +21 =133 -99
710 81 | 10:55 100 100 -1 +25 - 194 =155
7 10/81 | 11:05 100 100 -l4 +25 =190 - 149
710 81 | 11:30 81 80 =01 +20 - |3 -08
71081 | 1145 80 80 -01 +25 -39 -97
71081 | 12:10 o0 60 =02 +10 -76 -5
7.10/81 | 12:21 o0 o0 +04 +10 -73 -84
71081 | 12:42 40 40 =00 =10 -~ 40 -35
710,81 | 12:50 40 40 =00 =07 —43 -32
710 81 1:05 21 21 -39 =56 -29 -27
7,10 /81 1:15 21 21 —48 =03 - 31 =30
7.10/81 1:28 0 0 =101 -126 -3 -42
710/81 1:35 0 0 =103 -123 =30 43
7 10/81 1:50 - 20 - 20 =108 - 208 - 87 -73
7/10/81 2:05 -20 - 20 =104 =202 -5 ¥4
71081 2:25 - 40 - 40 -276 a1 -121 -+ 152
771081 3:.00 -4} - 41 - 289 =304 =141 - 169
710/81 1 -20 -20 =176 =216 =03 -84
71081 316 - 20 20 =169 =210 - 58 -76
7/10/81 3:25 0 0 -89 -117 -21 -39
710/81 3:30 0 0 =100 =119 -28 -2
710 81 3:45 21 21 -34 - 45 17 -15

(Continued next page)




TABLE B-12. THERMAL STRUCTURAL TEST DATA FOR COUPON
TSC-1 NORMAL TEST (Concluded)

Strain, uinch/inch
Temperature, °C Silicon Aluminum
Date Time | Silicon | Alumioum | Ch.1 | Ch.2 | Ch. 3 | Ch 4
7/10/81 | 352 20 20 -33 - 45 -14 -14
7.10/81 4.05 40 40 +02 +06 -39 -12
7,10/81 4:10 40 40 00 +08 -39 -09
7/10/81 | 450 27 27 -12 -22 =10 - 04
7/13/81 | 8:30* 24 24 =16 -26 -09 00
*3513 Calibravion Check
Notes: (1) Strain gage information
In_eu.l Silicon Glass
Gage type WK-03-250TM- 350 WK-06-250TM- 350
Sec. | gage facior 196 (Chan. 1) 1.99 (Chan. 3)
Sec. 2 gage factor 1.88 (Chan. 2) 1.89 (Chan. 4)

(2) Indicated gage factor = 199

(3) Test performed by | Pimentel, R. Huebschen, and D Gillaspy




TABLE B-13. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-2 NORMAL TEST

Strain, winch/inch
Temperature, °C Silicon Glass

Date Time | Silicon Glass Ch.5 | Ch.6 | Ch.7 | Ch. 8
7/10/81 9:15 27 27 +08 +04 - =02
71081 | 920 40 40 +53 +59 00 +08
710/81 9:30 40 40 + 30 +51 =06 -04
771081 1 950 o0 00 +83 | +107 - -
7710781 | 9:55 00 60 +80 | +101 =36 - 26
71081 | 10:35 80 80 +93 | +133 - —48
7/10/81 | 10:42 sl RO +94 +130 -76 - 54
7710781 | 10:57 100 100 +113 | +170 | —124 -98
710/81 | 11:07 100 100 +118 +174 - 123 =20
771081 | 1133 80 80 +94 | +133 -73 =55
71081 | 1146 80 80 +95 | +127 -75 -57
7710/81 [ 12:10 00 00 +55 +80 —4] -28
7081 1221 00 00 +51 +80 ~40 -39
710 81 | 12:42 40 40 +02 +29 -24 -20
7/10/81 | 12:50 40 40 +01 8 -1 w20
710 /81 1:10 21 21 1 ot =16 -3
7/18/81 118 21 21 =00 =05 -22 -20
7/10/81 | 130 0 0 =153 | =138 -37 ~46
7/10/81 1197 0 0 w156 - 159 -37 -49
7/10/81 | 155 -20 -20 —-254 | =262 =56 -5
710/81 2:15 - 20 - 20 =253 -262 - 58 -8l
7/10/81 | 2:30 —41 —41 -402 | =412 =130 | —159
7/10/81 2:55 =40 —40 -394 =408 - 121 =150
7/10 81 310 -1 -21 =200 - 280 -T7 -99
7/10/81 3o -20 -20 =252 -=263 =05 -87
7/10/81 3.20 0 0 - 149 w350 =30 —47

(Continued next page)
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TABLE B-13. THERMAL STRUCTURAL TEST DATA FOR

COUPON TSC-2 NORMAL TEST (Concluded)

Strain, winch/inch
Temperature, °C Silicon Glass
Date Time | Silicon Glass Ch. 5 Ch. 6 Ch. 7 Ch. 8
7,10/81 3 3o 0 0 - 144 ~ 148 -29 — 44
71081 }50 2l 2 -3 -3) ~= 04 -i2
71081 353 20 20 -39 - M +01 =04
7 10/81 4.05 40 40 + 3o +55 =01 +08
7/10/81 412 40 40 + M +52 01 +11
71081 450 27 27 =00 +08 +04 +09
7/13/81 8 30* 24 24 -i$ -02 =04 =10
* 3513 Cahibranon check
Notes (1) Strain gage information
ltem Silicon Glass
Gage type WK-03-250TM- 350 WK-00-250TM- 350

Sec. 1 gage lactor
Sec. 2 gage factor

196 (Chan 5
| 88 (Chan o)

() Indicated gage factor = 199

(1) Test performed by | Pimentel, R Huebschen

202 (Chan. M)
193 (Chan 8)

cand D Gillaspy
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TABLE B-14. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-3 NORMAL TEST

Strain, uinch/inch
Temperature, °C Silicon Glass

Date Time | Silicon Glass Ch.9 | Ch.10 | Ch. 11 | Ch. 12
710 81 9:15 27 27 +01 =03 00 00
710 81 | 920 40 40 +15 + 18 -4 -02
710 /81 9:30 40 40 +10 +18 +01 +04
710 /81 9:50 o0 o0 +12 + 37 - 40 -38
7/10/81 | 9:57 00 o0 +05 +35 =51 =30
710 81 | 10:35 80O 80 -=05 +42 -93 -77
7 10/81 | 10:42 80 80 - 14 +26 -97 -77
710 81 | 11:00 100 100 -28 +28 - 140 - 126
7710 /81 | 1108 100 100 -28 +29 - 149 - 127
7/10/81 | 11:38 80 80 - 08 + 30 -93 -76
71081 | 11:48 80 80 =09 +28 -97 -77
7/10/81 | 12:15 03 03 -03 +20 - 58 — 44
7/10/81 | 12:23 ol ol -=03 +24 -3$1 - 42
7/10/81 | 12:42 41 41 -3 -9 - 24 -22
710/81 | 12:50 40 40 -i3 =10 -2 -l$
71081 1:12 21 21 — 40 - | =18 -ld
71081 1:20 21 21 —41 -§7 -16 -12
7/10/81 1.30 0 0 =100 - 135 - 38 — 40
7/10/81 1.40 0 0 -91 - 126 -25 - 34
710 81 2:00 - 20 - 20 — 148 =190 - 57 - 04
7 10 81 2:20 - 20 -20 -=138 - {87 - 47 -$?
710,81 235 - 40 - 40 - 225 =300 =100 - 124
7/10/81 | 2:50 - 40 - 40 -243 =309 =113 - 130
7.10/81 310 - 20 w20 -159 -212 -65 -8l
71081 | 315 -20 -20 - 153 - 200 -0l -73
710 81 330 0 0 -87 -{22 o 14 -33

(Continued next page)




TABLE B-14. THERMAL STRUCTURAL TEST DATA FOR
COUPON THC-3 NORMAL TEST (Concluded)

Strain, winck/inch
Temperature, °C Silicon Glass
Date Time | Silicon Glass Ch.9 | Ch.10 | Ch. 11 | Ch. 12
7/10/81 | 3:33 0 0 -83 =137 -22 =30
7/10/81 | 3:50 21 21 -26 =45 =02 =03
7/10/81 | 3:54 20 20 -26 —-43 0000 =01
7/10/81 | 4:.08 40 40 +11 +11 +05 +11
7/10/81 | 4:13 40 40 +11 +11 +11 +04
7/10/81 | 4:50 27 27 -=04 =13 +22 +08
7/13/81 | 8:30* 24 24 =06 =16 =01 +01
* 3513 Calibration check
Notes: (1) Strain gage information
Item Silicon Glass
Gage type WK-03-250TM-350 WEK-06-250TM-350

Sec. 1 gage factor 1.96 (Chan. 9)
Sec. 2 gage factor 1.88 (Chan. 10)

(2) Indicated gage factor = 1.99

2.02 (Chan. 11)
1.93 (Chan. 12)

(3) Test performed by J. Pimentel, R. Huebschen, and D. Gillaspy
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TABLE B-15. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-4 NORMAL TEST

Strain, winch/inch
Temperature, °C Silicon Glass

Date Time | Silicon Glass Ch. 1 Ch.2 | Ch3 | Ch ¢
7 0 81 1:35° 2 23 ~0000 | =0003 | #0000 | +0003
70 81 1:55 40 40 +13 +28 40 =10
7 0 81 200 40 40 + 14 + 3o - 42 =14
7081 2:20 59 59 +22 + 139 -78 — 44
7/6/81 2.3 ol) o0 +22 + 8 - 87 - 47
7 0 8l 2:55 78 78 +13 + 45 -128 -78

o 81 307 79 79 +05 + 48 =130 -85
7/6/81 340 o8 o8 =00 + 37 - |RY - 124
70 81 345 09 09 +01 + 10 =19 =130
70 81 405 80 80 +10 + 45 =134 - 81
7/0/81 410 RO 80 + 00 +42 =130 - 81
7 0 81 425 ol ol +10 + 38 -85 =40
7 0 81 430 o0 ol +11 + 38 - 80 - 45
7 0 81 440 40 40 +02 +13 - 54 -27
T o8l 4:45 40 40 +07 +20 - 51 -19
7/7/81 8:50°* 20 20 - 29 =40 - 26 -20
7/7/81 9204 20 20 -0 +03 +05 +03
7 7/81 9:37 0 0 =0l -78 =09 =10
7/7/8] 0:42 0 0 - 65 - 76 o § -23
7/7/81 048 20 20 - 01 =04 + I8 +2)
7/7/81 9:55 20 20 ot £} +05 +11 +12
77781 | 1000 2 { 22 =01 00 + 00 + 08

* 3500 Calibranon check

**3512 Calibration check

+All Channels rezeroed

Notes (1) Strain gage informaton

ltem Sihicon Glass
Crage type Wa-03-250TM-350 WK -006-250TM-350
Sec. | gage lactor 1.96 (Chan. 1) 202 (Chan. 3
Sec 2 gage factor 1 88 (Chan. ) 193 (Chan. 4

() Indicated gage factor = 199

(3) Test performed by | Pimentel, R Huebschen, and D Gillaspy




TABLE B-16. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-5 NORMAL TEST

Strain, winch/inch
Temperature, °C Silicon Glass
Date Time | Silicon Glass Ch.5 | Ch.6 | Ch.7 | Ch. 8
7 0/81 1:35 23 23 +0005 | 40004 | 40006 | —0005
7.0/81 1:35 40 40 + 3 +28 - 37 =30
7081 2:00 40 40 + 38 +3? -33 =235
70 81 2:20 59 59 +35 +48 -78 -bd
7081 2:30 o0 60 + 40 +52 - 80 - 068
70/81 2:35 78 78 +37 +56 -i29 =103
7.0/81 307 79 79 +32 +48 -132 =100
70/81 340 o8 98 +43 + 50 =190 157
76/81 345 100 100 +25 +50 - 185 =154
7681 4.05 80 80 + 34 + 57 -{32 - 102
70 81 4:10 80 80 +39 +55 -129 =101
7/6/81 4:25 o0 ol + 44 +43 -83 —-03
7/6/81 4:30 60 00 + 38 +48 -83 =00
7/0/81 440 40 40 +17 +27 ~ 49 -36
7/6/81 4:45 40 40 +32 +23 - 38 -33
7/7/81 8:50 20 20 -23 —45 -2 -25
7/7/81 9:20* 20 20 +04 +04 +03 +02
7/7/81 9:37 0 0 - 506 - 54 =05 -i%
7/7/81 9:42 0 0 =60 -§7 =006 =15
7/7/81 9:48 20 20 +08 +00 +22 +07
7/7/81 9:55 20 20 +11 +11 +10 +10
77781 | 10:00 22 22 +12 +24 +07 +08
*Channels rezeroed
Notes: (1) Strain gage information
ltem Silicon Glass
Gage type WK-03-250TM-350 WK-006-250TM-350
Sec. 1 gage factor 1.96 (Chan. 5) 2.02 (Chan. 7)
Sec. 2 gage factor 1.88 (Chan. o) 1.93 (Chan. 8)

.
tJ

Indicated gage factor = 199

(3) Test performed by | Pimentel. R. Huebschen, and D Gillaspy
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TABLE B-17. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-6 NORMAL TEST

Strain, winch/inch

Temperature, °C Silicon Aluminum

Date Time | Silicon | Aluminum | Ch. 1 Ch.2 | Ch.3 | Ch. ¢
7,/8/81 2% 22 22 +0003 | =0002 | =0002 | =0003
7/8/81 2:40 40 40 + 48 +50 +067 +49
7/8/81 2:45 41 41 +40 + 35 +062 +40
7/8/81 | 300 02 62 44 +50 +105 + 00
7/8/81 | X110 02 62 +33 + 50 +99 + 58
7881 | 33 80 80 +23 +52 +123 +07
7881 | 343 80 80 +24 +57 +119 +05
7/8/81 4:00 100 100 +10 + 50 + 130 +70
7/8/81 418 100 99 +09 + 54 +139 +75
7/8/81 445 80 80 +23 + 58 +128 +72
79 81 K40 B0 80 +23 +55 +131 +69
7/9/81 9:00 o0 o0 +18 + 34 +908 +063
7/9/81 | 9:15 00 o0 +18 +33 +91 +50
7/9/81 9:40 40 40 +02 -03 +0l1 +21
7/9/81 | 9:45 40 40 +09 +08 +51 +22
7/9/81 | 10:05 20 20 =15 -3 +04 - 19
7/9/81 | 10:10* 20 20 -08 - 36 +05 -19
79/81 | 11:03 0 0 e\l =110 =105 - 80
7/9/81 | 11:15 0 0 =105 =110 =104 =103
7/9/81 | 11:35 -20 -20 - 204 - 192 - 26 b § 3
7/9/81 | 11:44 -20 -20 - 180 - 192 -227 - 183
7/9/81 | 12:05 - 40 - 40 -i411 - 309 —434 - 380
7/9/81 | 12:12 - 40 - 40 — 400 -370 ~ 430 - 380
7/9/81 | 12:35 -20 -20 -202 =215 -239 - 202

(Continued next page)
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TABLE B-17. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-6 NORMAL TEST (Concluded)

Strain, uinch/inch
Temperature, °C Silicon Aluminum

Date | Time | Silicon | Aluminum | Ch.1 | Ch.2 | Ch.3 | Ch 4
7/9/81 | 12:42 -20 -20 =196 =200 -229 =199
7/9/81 | 12:48 0 0 =105 =120 =114 =104
7/9/81 1:05 0 0 =104 -128 =113 =104
7/9/81 1:21 +20 +20 =108 =140 =N =20
7/9/81 1:40 +20 +20 —=05 -19 -02 =03
779/81 2:10 +23 +23 +02 -17 +06 =00

*Changed temperature recorders

Notes: (1) Strain gage informatior

ltem Silicon Aluminum
Gage type WK-03-250TM- 350 WK-13-250TM-350

Sec. | gage factor
Sec. 2 gage factor

1.96 (Chan. 1)
1.88 (Chan. 2)

(2) Indicated gage factor = 199
(3) Test performed by ]J. Pimentel, R. Huebschen, and D. Gillaspy

2.17 (Chan. ))
202 (Chan. 4)
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TABLE B-18. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-7 NORMAL TEST

Strain, winch/inch
Temperature, °C Silicon Aluminum
Date | Time | Silicon | Aluminum | Ch.5 | Ch 6 | Ch.7 | Ch. 8
7/8/81 | 225 22 22 +0002 | =0001 | +0001 | =0003
7/8/81 2:40 40 40 + 36 +069 +58 +42
7/8/81 2:45 41 41 +29 +53 +63 +36
7/8/81 3:.00 62 02 +50 +85 +107 +50
7/8/81 | 310 6l 61 +27 +78 +92 +49
7/8/81 | X232 80 80 +26 +99 +i21 +57
7/8/81 3:45 80 80 +25 +97 +120 +57
7/8/81 4:10 100 100 +12 +101 + 145 +00
7/8/81 4:25 100 100 +08 +103 +153 +0l
7/8/81 4:50 80 80 +18 +91 +131 +03
7/9/81 8:42 80 80 +21 +91 +127 +57
7/9/81 9:03 60 60 +12 +57 +93 +39
7/9/81 9:17 o0 60 +22 +59 +92 +42
7/9/81 9:45 40 40 +04 +31 +51 +15
7/9/81 9:45 40 40 +03 +25 +48 +26
7/9/81 | 10:12 20 20 -1 - 28 -7 -3t
7/9/81 | 10:20* 20 20 ol | | -7 - 14 =17
7/9/81 | 11:.04 0 0 -76 -89 -107 =90
7/9/81 | 11:15 0 0 -84 =100 =100 - 80
7/9/81 | 11:35 -20 -20 =154 - 189 =197 o £
7/9/81 | 11:45 w0 - 20 =163 - 1806 =199 =179
7/9/81 | 12:05 - 40 - 40 =260 =300 - 342 -291
7/9/81 | 12:12 —40 - 40 - 200 - e - 344 -
7/9/81 | 12:35 -20 -20 it 10 - 187 {5 =170
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TABLE B-18. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-~7 NORMAL TEST (Concluded)

Strain, winch/inch

Temperature, °C Silicon Aluminum

Date Time | Silicon | Aluminum | Ch. 5 Ch.6 | Ch.7 Ch. 8
7/9/81 | 12:43 -20 -20 =150 - 185 ~207 |
7/9/81 | 12:48 0 0 -84 -98 =120 | =104
7/9/81 1:05 0 0 -85 -97 =106 -87
7/9/81 1:22 +20 +20 -18 =11 -17 -230
7/9/81 1:40 +20 +20 00 +07 -13 ~06
7/9/81 2:10 +23 +23 +006 +08 +07 =06

*Changed temperature recorders

Notes: (1) Strain gage information

Item Silicon Aluminum
Gage type WK-03-250TM-350 WK-13-250TM-350

Sec. | gage factor
Sec. 2 gage factor

(2) Indicated gage factor = 199

1.96 (Chan. 5) 2.17 (Chan. 7)
1.88 (Chan. 6) 2.02 (Chan. 8)

(3) Test performed by J. Pimentel, R. Huebschen, and D. Gillaspy
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TABLE B-19. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-8 NORMAL TEST

Strain, winch/inch
Temperature, °C Silicon Steel
Date Time | Silicon Steel Ch.9 | Ch.10 | Ch. 11 | Ch. 12
7/8/81 | 225 2 2 0000 | 0000 0000 | 40001
7881 | 240 40 40 +55 +69 +58 +04
7 B/81 2:45 41 41 + 44 +57 +51 + 060
7881 | 300 62 62 +66| +89| +104| 4103
7881 | 310 61 61 +51 +70 +86 +91
7881 | 335 80 80 +50| 481 +121] 4125
7881 | 347 80 80 +62 +85| +121| +127
7881 | 412 100 100 462 +97 | 4145| +151
7/8/81 | 430 100 100 +73 +98 | +148| +159
7/8/81 | 450 80 80 +50 | +76| +130| +142
7/9/81 | 8:45 80 80 +50 | 483 +117| 4130
7981 | 905 60 60 +15 +30 +77 +78
7981 | 9:20 62 62 +26 +35 +82 + 84
7/9/81 | 945 40 40 -10| =18 +27 +37
7/9/81 | 9:50 40 40 -05 -13 +48 +35
7/9/81 | 10:12 20 20 -62 -67 -28 -29
7981 | 10:20 20 20 -60| =62 -23 -20
7/9/81 | 11.05* 0 0 —170| =180| =146| =145
7/9/81 | 11:18 0 0 -150| =146 =121| =135
7/9/81 | 11:36 -20 -20 -247| =243| =212 =213
7/9/81 | 11:45 -20 =20 —255| =251 =216 =228
7981 | 12:07 - 40 - 40 -9 | =368 =306| =360
7/9/81 | 12:14 - 40 - 40 —410| =370| =381| =377
7/9/81 | 12:36 =20 -20 -253 | =253| =229 =229
7/9/81 | 12:44 -20 -20 —254| =254| =224| =225
7/9/81 | 12:49 0 0 —145| =152 =130| =130

(Continued next page)
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TABLE B-19. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-8 NORMAL TEST (Concluded)

Strain, winch/inch
Temperature, °C Silicon Steel
Date Time | Silicon Steel Ch.9 | Ch.10 | Ch 11 | Ch. 12
7/9/81 1:06 0 0 =13 =144 -120| =125
7.9/81 1:23 +20 +20 - 40 - 38 =26 - 42
7/9/81 1 b +20 +20 -24 =900 -17 =16
7/9/81 2:10 +2) +23 -18 -23 =01 =07

* Changed temperature recorders

** Drop of condensation fell from chamber ceiling onto Channel 10 leads. This
caused erroneous readings for Chan==! 10

Notes: (1) Strain gage information

liem Silicon Steel
Gage type WK-03-250TM-350 WK-06-250TM-350
Sec. 1 gage factor 1.96 (Chan. 9) 1.99 (Chan. 11)
Sec. 2 gage factor 1.88 (Chan. 10) 1.89 (Chan. 12)

(2) Indicated gage factor = 199
(3) Test performed by J. Pimentel, K. Huebschen, and D. Gillaspy
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TABLE B-20. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-9 NORMAL TEST

Strain, uinch/inch
Temperature, °C Silicon Steel
Date Time | Silicon Steel Ch.1 | Ch.2 | Ch.3 | Ch. ¢
7/7/81 2:30° 25 25 +05 =05 +07 +08
7/7/81 2:40 ER) 44 +50 +29 +55 +65
7/7/81 2:50 42 42 +28 +24 +48 +49
7/7/81 2:58 62 62 +45 +51 +92 +104
7/7/81 3:.00 60 60 +35 +49 + 80 +90
7/7/81 3:25 80 80 +29 +48 +114 +128
7/7/81 3:35 80 8O +28 +43 +120 +132
7/7/81 4:00 100 100 +18 +53 +137 +165
7/7/81 4.05 100 100 +15 +49 +139 +165
7/7/81 415 80 80 +32 +43 +117 +137
7/7/81 4.24 81 81 +27 +45 +123 +133
7/7/81 4:34 60 60 +15 +17 +80 +96
7/7/81 4:40 61 61 +20 +18 +82 +96
7/7/81 445 40 40 +07 -17 +36 +47
7/8/81 §:15%e 25 25 +06 -20 =01 +01
7/8/81 9:10 26 206 +05 -23 -=03 +02
7/8/81 9:30 -] - -62 =115 - 108 =119
7/8/81 9:40 - - - 65 -2} =115 -120
7/8/81 | 10:08 =20 -20 - 152 =203 -214 -237
7/8/81 | 10:20 -20 -20 =160 =213 -220 -233
7/8/81 | 10:35 - 40 - 40 =293 -322 -333 g
7.8/81 | 10:40 - 40 - 40 - 269 =333 - 3406 -374
7/8/81 | 10:50 -20 =20 - 147 -202 =209 -228
7/8/81 | 11:10 -20 =20 -159 - 192 -=196 -214
7/8/81 | 11:20 -3 -2 =006 - 121 -112 - 121
7/8/81 | 11:25 0 0 ¥ - 109 - 104 -120

(Continued next page)
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TABLE B-20. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-9 NORMAL TEST (Concluded)

Strain, winch/inch
Temperature, °C Silicon Steel
Date Time | Silicon Steel Ch.1 | Ch.2 | Ch3 | Ch 4
7/8/81 [ 11:40 +20 +20 -08 =40 =36 =43
7°8/81 | 11:45 +20 +20 -09 -39 =31 - 41
7/8/81 | 1200 +19 +19 =00 - 38 =33 -4

* 3508 Calibratuon check
** 3509 Calibration check

Notes: (1) Strain gage information

liem Silicon Steel
Gage 1ype WK-03-250TM-350 WK-06-250TM - 350
Sec. | gage factor 196 (Chan. 1) 2.02 (Chan. 3)
Sec. 2 gage factor 1.88 (Chan. 2) 1.93 (Chan. 4)

(2) Indicated gage factor = 1.99
(3) Test performed by J. Pimentel, R. Huebschen, and D. Gillaspy
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TABLE B-21. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-10 NORMAL TEST

Strain, uinch/inch
Temperature, °C Silicon Steel
Date Time | Silicon Steel Ch. 5 Ch. 6 Ch. 7 Ch. 8
7/7/81 2:30° 25 2% 402 -0} -07 ~01
7781 | 240 a8 43 +42 +48 +44 +54
7/7/81 2:50 42 42 +23 +2) +41 + 40
7/7/81 2:55 02 02 + 48 + 55 + 88 + 88
7/7/81 300 o0 o0 +33 +50 +76 +83
7/7/81 328 80 RO + 33 + 48 +94 + 100
7/7/81 3:35 80 80 +25 +45 +103 +112
7/7/81 4.00 100 100 +28 + o0l +133 +150
7/7/81 4:.05 100 100 +25 +53 +133 + 141
7/7/81 415 BU 80 +28 + 40 +107 +124
7/7/81 424 81 81 + 34 +37 + 109 +124
7/7/81 434 o0 o0 0 +106 +08 + 84
7/7/81 440 o1 ol + 04 +22 +74 + 80
7/7/81 445 40 40 -22 -17 +27 + 30
7/R/81 8:15 25 25 -1 ! =19 -07 -05
7/8/81 910 20 20 =00 -23 -07 4+02
7/8/81 9:30 =3 -} -93 - 119 =105 - 116
7/8/81 940 = -} =101 -122 -115 - 125
7/8/81 | 10:08 -0 - 20 - 187 -214 -220 -228
7/8/81 10:20 - 20 - 26 -~ 196 -225 - 227 -237
7 881 | 10:35 - 40 ~ 40 - 308 =330 - 341 =353
78 81 | 10:40 - 40 - 40 - 307 - 334 - 347 - 356
7/8/81 10:50 - 20 -20 -172 - 207 -215 -223
7/8/81 | 11:10 - 20 -20 - 108 - 194 ~203 -211
7/8/81 | 11:20 - -2 - 98 -=120 - 120 - 126
7/8/81 1 1:29 0 0 -91 - 113 =110 - 120
7/8/81 | 11:40 | + 20 +20 -22 - 42 - 37 - 50

(Continued next page)




TABLE B-21. THERMAL /STRUCTURAL TESYT DATA FOR
COUPON TSC-10 NORMAL TEST (Concluded)

Strain, winch/inch
Temperature, °C Silicon Steel
Date Time | Silicon Steel Ch.5 | Ch.6 | Ch.7 | Ch. 8
T/8/81 | 1145 +20 +20 -1{3 =31 -3 =04
//8/81 | 12200 +19 +19 -2 -30 -33 - 47
* 3508 Calibravon check
Notes: (1) Strain gage information
ltem Silicon Steel
Gage type WK-03-250TM- 350 WK-006-250TM-350

Sec. 1 gage lactor
Sec. 2 gage factor

1.96 (Chan. 5)
1.88 (Chan. 0)

Notes: (2) Indicated gage lactor = 199
(3) Test performed by J Pimentel, R. Huebschen, and D. Gillaspy

202 (Char. 7)
1.93 (Chan. 8)
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TABLE B-22. THERMAL /STRUCTURAL TEST DATA FOR
COUPON TSC-11 NORMAL TEST

| [ Strr in, winch/inch
Temperature, °C Silicon Steel
Date | Time | Silicon | Steel | Ch.9 | Ch. 10 | Ch 11 | Ch. 12
1781 | 2:300 2 2 -4 | =03 | =01 | —04
77/81 | 240 44 44 +32 | +27 | 449 | +56
77/81 | 2:50 ° 42 +20 | +20 | +30 | +46
17781 | 255 > 62 +25 | +52 | 490 | +92
177181 | 300 60 60 +20 | 43 | +78 | +86
7/7/81 3:25 B0 80 +8 + 41 +113 +114
17781 | 335 80 80 +9 | +53 | +120 | +126
7/7/81 4:00 102 102 -3 +47 + 101 + 101
7781 | 408 102 102 —05 | 455 | +152 | +150
7781 | 415 82 82 +20 | 448 | +122 | +128
7/7/81 424 82 82 +07 +51 + 1206 + 130
7/7/81 434 0l 03 0 +33 + 89 + 80
7/7/81 440 02 02 +14 + 35 +91 + 85
7/7/81 445 42 42 -03 -01 + 40 + 49
7/8/81 | 815%e 2 2 08 | -0 | —06 | —o8
7/8/81 9:10 20 26 -8 - 18 -02 =10
78/81 | 930 - - 03 | —o04 | =119 | =125
7/8/81 9:40 -1 et | - 108 -~ 118 - 132 - 136
7/8/81 10:08 - 20 - 20 - 204 - 267 - 257 - 265
7/8/81 10:20 - 20 - 20 - 281 - 291 - 278 - 285
7/8/81 10:35 — 40 - 40 — 450 — 457 — 434 - 437
7/8/81 1040 - 40 — 40 — 4063 ~ 400 - 427 — 435
7/8/81 10:50 - 20 -20 - 254 - 259 -254 - 260
7/8/81 11:10 -19 - 19 -237 - 249 -239 -253
7/8/81 11:20 -2 -2 - 104 - 120 -133 -135
7/8/81 11:25 0 0 —04 =108 - 125 - 130
7/8/81 1140 +20 +20 - 29 - 34 -39 - 38

(Continued next page)




TABLE B-22. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC~11 NORMAL TEST (Concluded)

Strain, uinch/inch

Temperature, °C Silicon Steel
Date Time | Silicon Steel Ch.9 | Ch.10 | Ch. 11 | Ch. 12
7/8/81 | 11:45 +20 +20 =25 -27 -28 -3
7/8/81 | 12:00 +19 +19 - 14 -3 -28 -33

* 3508 Calibration check
** 3509 Calibration check

Notes: (1) Strain gage information

ltem Silicon Steel
Gage type WK-03-250TM-350 WK-06-250TM-350
Sec. 1 gage factor 1.96 (Chan. 9) 2.02 (Chan. 11)
Sec. 2 gage factor 1.88 (Chan. 10) 1.93 (Chan. 12)

(2) Indicated gage factor = 199
(3) Test performed by J. Pimentel, R. Huebschen, and D. Gillaspy




TABLE B-23. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-12 NORMAL TEST

Strain, winch/inch
Temperature, °C Silicon Steel
Date Time | Silicon Steel Ch.9 [ Ch 10| Ch9 | Ch 10
70 81 1:35 23 23 =0005 | 40004 | +0004 0000
T 0 81 1:5% 42 42 + 08 +47 +59 +459
T o 81 200 41 41 +09 +43 +50 +09
760 81 220 02 ¥4 +01 + 50 +81 +102
70 81 2:30 04 04 +1 +59 + 86 +107
70 81 2:58 R4 R4 - +77 +114 +1M
70 81 307 84 85 -18 + 00 +117 +131
70 81 340 104 104 - 37 +02 +123 +151
70 81 345 104 104 -33 +07 +127 +153
70 81 4.05 R4 R4 -16 + 08 +119 + 130
760 81 410 84 S84 -12 +70 +127 +137
70 81 425 04 05 +01 +02 +99 +101
7/6/81 430 04 05 -1 +03 +102 + 108
7 0 81 440 44 44 00 +28 +70 +67
70 81 445 43 EE] -02 + 38 +05 + 08
77/81 8:50 20 20 - 34 - 32 -32 -32
7/7/81 9:20° 20 20 +00 +02 00 a4
7/7/81 9:37 0 0 - - 82 - 80 -33
1/7/81 0:42 0 0 -39 - 86 -84 -84
7/7/81 048 20 20 +10 =04 +05 +13
7/7/81 055 20 20 +09 + 08 +07 +07
7/7/81 10:00 22 i 22 +11 +12 +07 +07
* Rezero
Notes: (1) Strain gage information
ltem Sihicon Steel

Gage tvpe

Sec

1 gage factor

Sec. 2 gage lactor

() Indicated gage factor = 199

WRK-03-250TM- 350
1.96 (Chan. 9)
| 88 (Chan. 1))

WK-00-250TM- 350
1.99 (Chan. 11)
1.89 (Chan. 12)

(1) Test performed by | Pimentel, K Huebschen, and D Gillaspy




TABLF 8-24. THERMAL STRUCTURAL TEST _ATA FOR
COUPON TSC-1 OVERSTRESS TEST

Strain, winch/inch
Temperature, °C Silicon Glass

Date Time | Silicon Glass Ch. 1 Ch. 2 Ch. 3 Ch. 4
7/13/81 | 930 24 24 -02 +02 +09 =03
7/13/81 9:50 o0 60 +37 +069 -~ 406 -39
7/13/81 | 9:55 00 o0 +31 + 00 -3 -
7/13/81 | 10:55 120 120 -19 +04 - 240 =193
7/13/81 | 10:35 120 120 -is +63 -237 ~=190
7/13/81 [ 11:10 ol ol +14 +59 - 58 —= 40
7/13/81 | 11:25 60 60 +15 + 48 -2 -4}
7/13/81 | 12:15 0 0 —88 =105 -21 -37
7/13/81 | 12:25 0 0 -89 -95 - 18 - 37
7/13/81 | 12:40 =060 =60 —418 =520 -224 =20l
7/13/81 | 12.45 =00 =60 ~ 400 - 521 =311 -258
7/13/81 1:05 0 0 -§3 -89 -14 -32
7/13/81 1:15 0 0 -83 -89 -13 -39
7/13/81 1:35 24 24 —=06 +08 +02 =05

Notes: (1) Strain gage information

ltem Silicon Glass
Gage type WK-03-250TM-350 WK-00-250TM- 1350

Sec. 1 gage factor 1.90 (Chan. 1)
Sec. 2 gage factor 1.88 (Chan. 2)

(2) Indicated gage factor = 199

1.99 (Chan. })
1.89 (Chan. 4)

(3) Test performed by | Pimentel, R. Huebscher, and D. Gillaspy




TABLE B-25. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-2 OVERSTRESS TEST

Strain, uinch/inch
Temperature, °C Silicon Glass

Date Time | Silicon Glass Ch. 5 Ch. 6 Ch. 7 Ch. 8
7T 1381 9:30 24 24 -02 +05 -=09 -07
71381 9:50 ol ol + 105 +124 - 34 - 20
713 81 9:50 ol o0 +91 +121 —41 -25
71381 | 10:27 120 120 + 130 +203 - 167 -138
T13/81 | 10:38 120 120 + 148 + 200 -173 -133
7/13/81 | 11:18 ol ol +0l +95 - 41 - 30
7/13/81 | 11:28 o0 o0 +59 +82 ~43 -20
713/81 | 12:15 0 \] =150 =167 — 43 -5)
7/13/81 | 12:25 0 0 - 148 - 158 -39 — 49
7/13/81 | 12:40 - o0 - 00 =560 -572 -237 =270
7/13/81 | 12:45 - 00 =00 -552 - 503 -232 =200
7/13/81 105 0 0 - 142 =154 =30 - 49
7/13/81 1:15 0 0 - 141 -153 -35 - 57
7/13/81 1:38 24 24 - 14 =10 +08 - 04

Notes: (1) Strain gage information

ltem Silicon Glass
Gage type WK-03-250TM- 350 WK-00-250TNM- 350

Sec. 1 gage factor
Sec. 2 gage factor

1.90 (Chan. 5
1 88 (Chan. 0)

(2) Indicated gage factor = 199

202 (Chan. 7)
193 (Chan 8)

(3) Test performed by ] Pimentel, R. Huebschen, and D Gillaspy




TABLE B-26. THERMAL STRUCTURAL TEST DATA FOR
COUPON TSC-3 OVERSTRESS TEST

Strain, uinch/inch
Temperature, °C Silicon Glass

Date Time | Silicon Glass Ch.9 | Ch.10 | Ch. 11 | Ch. 12
7/13/81 | 930 24 24 =01 -04 +03 +01
7/13/81 | 9:50 60 60 +27 +53 - -29
7/13/81 | 957 60 60 +21 +54 — 46 -3
7/13/81 | 10:30 120 120 =43 -3 =209 - 184
7/13/81 | 10:40 120 120 =38 -49 =207 =176
7/13/81 [ 11:20 62 62 +23 +4° -$3 - 42
7/13/81 [ 11:30 oU 60 +25 +40 - 36 e
7/13/81 | 12:15 0 0 -75 =103 e 1 -25
7/13/81 | 12:25 0 0 - 71 -99 -24 -28
7/13/81 | 12:40 =60 - 60 =350 =420 =200 -220
7/13/81 | 12:45 =060 =00 351 -430 - 208 -228
7/13/81 | 1:05 0 0 -0l -95 -21 -26
7/13/81 | 1:15 0 -67 -97 -20 .
7/13/81 | 1:35 24 24 =03 -08 +05 +11

Notes: (1) Strain yage information
ltem Silicon Glass
Gage type WK-03-250TM-350 WEK-06-250TM-350

Sec. 1 gage factor 1.96 (Chan. 9)
Sec. 2 gage factor 1.88 (Chan. 10)

(2) Indicated gage factor = 199

2.02 (Chan. 11)
1.93 (Chan. 12)

(3) Test performed by J. Pimentel, R. Huebschen, and D. Gillaspy
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B.4 STRUCTURAL DEFLECTION TEST DATA

Raw data for the structural deflection test consists of: (a) total load on the module versus
structural member deflection at the center, mid-diagonal, and corner cell locations, and (b) strain
in both structural member and cell at the central, mid-diagonal, and corner cell locations. Results
from the overstress tests are included in these data. The load versus deflection data for the center
cell position are shown in Figures B-1 through B-14. The decreasing-load versus deflection
curves were intentionally displaced horizontally from the increasing-load versus deflection
curves. The strain data are summarized in Table B-28 through B-41.

The time span for these tests is summarized in Table B-27.
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Figure B-1. Module SDM-1 load versus deflection data (glass side up) for
normal (O-+50-+0 psf) test.
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Figure B-2. Module SDM-2 load versus deflection data (glass side up) for
normal (050 -+0 psf) test.
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Figure B-5. Module SDM-3 load versus deflection data (glass side up) for overstress
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TABLE B-27. TIME LINE FOR STRUCTURAL DEFLECTION TEST

Date Module No. Comments*
17 July 1981 SDM-2 Normal test—glass side up
20 July 1981 SDM-2 Normal test—glass side down
20 July 1981 SDM-1 Normal test—glass side up
21 July 1981 SDM-3 Normal test—glass side up
22 July 1981 SDM -4 Normal test—glass side up
22 July 1981 SDM-5§ Normal test—bare wood side down
23 July 1981 SDM-6 Normal test—bare wood side down
24 July 1981 SDM-7 Normal test—ribbed side down (failure)
27 July 1981 SDM-8 Normal test—Dbare steel side down
28 July 1981 SDM-9 Normal test—supported rib side down
29 July 1981 SDM-8 Overstress test—bare steel side down
30 July 1981 SDM-7 Normal test—tapered, unsupported rnb
side down (failure)
30 July 1981 SDM-o Cverstress tent—bare wood side down
31 July 1981 SDM -3 Overstress teit—glass side up

*Normal test cycle 05040 psl in 10 ps/ sieps
Oversiress test oycle 0 10020 psf in 20 psf steps
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8.5 THERMAL TEST DATA

Raw data for the thermal test consist of temperatures measured in the modules, in the test
apparatus, and at different locations in the chamber, center cell output voltage and current (when
the modules were used to generate electric power), and millivoit readings on the radiometers.
These data are summarized in Tables B-43 and B-44, Locations where the incident radiant
energy flux was measured are shown in Figure B-15,

The time span for this test is summarized in Table B-42,

TABLE B-42, TIME LINE FOR THERMAL TEST

Test No. Date Time at Steady-State
1 8/20/81 1209
2 8/20/81 14:09
k) 8/21/81 Y18
4 8/21/81 9:36
5 8/21/81 11:35
6 8/21/81 12:37
7 8/21/81 14:04
8 8/21/81 14:29
9 9/14/81 10:27

10 9/14/81 12:45
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Figure B-15. Measurement locations for radiant energy flux (dimensions in inches).
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