783 research outputs found
Spin and lattice excitations of a BiFeO3 thin film and ceramics
We present a comprehensive study of polar and magnetic excitations in BiFeO3
ceramics and a thin film epitaxially grown on an orthorhombic (110) TbScO3
substrate. Infrared reflectivity spectroscopy was performed at temperatures
from 5 to 900 K for the ceramics and below room temperature for the thin film.
All 13 polar phonons allowed by the factor-group analysis were observed in
theceramic samples. The thin-film spectra revealed 12 phonon modes only and an
additional weak excitation, probably of spin origin. On heating towards the
ferroelectric phase transition near 1100 K, some phonons soften, leading to an
increase in the static permittivity. In the ceramics, terahertz transmission
spectra show five low-energy magnetic excitations including two which were not
previously known to be infrared active; at 5 K, their frequencies are 53 and 56
cm-1. Heating induces softening of all magnetic modes. At a temperature of 5 K,
applying an external magnetic field of up to 7 T irreversibly alters the
intensities of some of these modes. The frequencies of the observed spin
excitations provide support for the recently developed complex model of
magnetic interactions in BiFeO3 (R.S. Fishman, Phys. Rev. B 87, 224419 (2013)).
The simultaneous infrared and Raman activity of the spin excitations is
consistent with their assignment to electromagnons
From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors.
Automatic data acquisition systems provide large amounts of streaming data generated by physical sensors. This data forms an input to computational models (soft sensors) routinely used for monitoring and control of industrial processes, traffic patterns, environment and natural hazards, and many more. The majority of these models assume that the data comes in a cleaned and pre-processed form, ready to be fed directly into a predictive model. In practice, to ensure appropriate data quality, most of the modelling efforts concentrate on preparing data from raw sensor readings to be used as model inputs. This study analyzes the process of data preparation for predictive models with streaming sensor data. We present the challenges of data preparation as a four-step process, identify the key challenges in each step, and provide recommendations for handling these issues. The discussion is focused on the approaches that are less commonly used, while, based on our experience, may contribute particularly well to solving practical soft sensor tasks. Our arguments are illustrated with a case study in the chemical production industry
High-temperature phase transitions in SrBi_2Ta_2O_9 film: a study by THz spectroscopy
Time-domain THz transmission experiment was performed on a film deposited on sapphire substrate. Temperatures between 300
and 923 K were investigated and complex permittivity spectra of the film were
determined. The lowest frequency optic phonon near 28 cm reveals a slow
monotonic decrease in frequency on heating with no significant anomaly near the
phase transitions. We show that the dielectric anomaly near the ferroelectric
phase transition can be explained by slowing down of a relaxational mode,
observed in the THz spectra. A second harmonic generation signal observed in a
single crystal confirms a loss of center of symmetry in the ferroelectric phase
and a presence of polar clusters in the intermediate ferroelastic phase.Comment: subm. to J. Phys.: Condens. Matte
Targeted NGS for species level phylogenomics : “made to measure” or “one size fits all”?
Targeted high-throughput sequencing using hybrid-enrichment offers a promising source of data for inferring multiple, meaningfully resolved, independent gene trees suitable to address challenging phylogenetic problems in species complexes and rapid radiations. The targets in question can either be adopted directly from more or less universal tools, or custom made for particular clades at considerably greater effort. We applied custom made scripts to select sets of homologous sequence markers from transcriptome and WGS data for use in the flowering plant genus Erica (Ericaceae). We compared the resulting targets to those that would be selected both using different available tools (Hyb-Seq; MarkerMiner), and when optimising for broader clades of more distantly related taxa (Ericales; eudicots). Approaches comparing more divergent genomes (including MarkerMiner, irrespective of input data) delivered fewer and shorter potential markers than those targeted for Erica. The latter may nevertheless be effective for sequence capture across the wider family Ericaceae. We tested the targets delivered by our scripts by obtaining an empirical dataset. The resulting sequence variation was lower than that of standard nuclear ribosomal markers (that in Erica fail to deliver a well resolved gene tree), confirming the importance of maximising the lengths of individual markers. We conclude that rather than searching for “one size fits all” universal markers, we should improve and make more accessible the tools necessary for developing “made to measure” ones
Magnetic and dielectric properties of multiferroic Eu0.5Ba0.25Sr0.25TiO3 ceramics
Dielectric and magnetic properties of Eu0.5Ba0.25Sr0.25TiO3 are investigated
between 10 K and 300 K in the frequency range from 10 Hz to 100 THz. A peak in
permittivity revealed near 130 K and observed ferroelectric hysteresis loops
prove the ferroelectric order below thistemperature. The peak in permittivity
is given mainly by softening of the lowest frequency polar phonon (soft mode
revealed in THz and IR spectra) that demonstrates displacive character of the
phase transition. Room-temperature X-ray diffraction analysis reveals cubic
structure, but the IR reflectivity spectra give evidence of a lower crystal
structure, presumably tetragonal I4/mcm with tilted oxygen octahedra as it has
been observed in EuTiO3. The magnetic measurements show that the
antiferromagnetic order occurs below 1.8 K. Eu0.5Ba0.25Sr0.25TiO3 has three
times lower coercive field than Eu0.5Ba0.5TiO3, therefore we propose this
system for measurements of electric dipole moment of electron.Comment: Phase Transitions, in pres
Effects of Added Vegetation on Sand Bar Stability and Stream Hydrodynamics
Vegetation was added to a fully developed sandy point bar in the meander of a constructed stream. Significant changes in the flow structure and bed topography were observed. As expected, the addition of vegetative resistance decreased the depth-averaged streamwise velocity over the bar and increased it in the open region. In addition, the secondary circulation increased in strength but became confined to the deepest section of the channel. Over the point bar, the secondary flow was entirely outward, i.e., toward the outer bank. The changes in flow led to changes in bar shape. Although the region of the bar closest to the inner bank accumulated sediment, erosion of the bar and the removal of plants by scouring were observed at the interface between the planted bar and the open channel.National Science Foundation (U.S.) (Grant No. EAR 0738352
Terahertz and infrared spectroscopic evidence of phonon-paramagnon coupling in hexagonal piezomagnetic YMnO3
Terahertz and far-infrared electric and magnetic responses of hexagonal
piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic
resonance is observed in the spectra of magnetic permeability mu_a [H(omega)
oriented within the hexagonal plane] below the Neel temperature T_N. This
excitation softens from 41 to 32 cm-1 on heating and finally disappears above
T_N. An additional weak and heavily-damped excitation is seen in the spectra of
complex dielectric permittivity epsilon_c within the same frequency range. This
excitation contributes to the dielectric spectra in both antiferromagnetic and
paramagnetic phases. Its oscillator strength significantly increases on heating
towards room temperature thus providing evidence of piezomagnetic or
higher-order couplings to polar phonons. Other heavily-damped dielectric
excitations are detected near 100 cm-1 in the paramagnetic phase in both
epsilon_c and epsilon_a spectra and they exhibit similar temperature behavior.
These excitations appearing in the frequency range of magnon branches well
below polar phonons could remind electromagnons; however, their temperature
dependence is quite different. We have used density functional theory for
calculating phonon dispersion branches in the whole Brillouin zone. A detailed
analysis of these results and of previously published magnon dispersion
branches brought us to the conclusion that the observed absorption bands stem
from phonon-phonon and phonon- paramagnon differential absorption processes.
The latter is enabled by a strong short-range in-plane spin correlations in the
paramagnetic phase.Comment: subm. to PR
Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As
We report on a systematic study of optical properties of (Ga,Mn)As epilayers
spanning the wide range of accessible substitutional Mn_Ga dopings. The growth
and post-growth annealing procedures were optimized for each nominal Mn doping
in order to obtain films which are as close as possible to uniform
uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the
mid-infrared absorption spectra whose position exhibits a prevailing blue-shift
for increasing Mn-doping. In the visible range, a peak in the magnetic circular
dichroism blue shifts with increasing Mn-doping. These observed trends confirm
that disorder-broadened valence band states provide a better one-particle
representation for the electronic structure of high-doped (Ga,Mn)As with
metallic conduction than an energy spectrum assuming the Fermi level pinned in
a narrow impurity band.Comment: 22 pages, 14 figure
- …