5,344 research outputs found

    Detecting the Dusty Debris of Terrestrial Planet Formation

    Full text link
    We use a multiannulus accretion code to investigate debris disks in the terrestrial zone, at 0.7-1.3 AU around a 1 solar mass star. Terrestrial planet formation produces a bright dusty ring of debris with a lifetime of at least 1 Myr. The early phases of terrestrial planet formation are observable with current facilities; the late stages require more advanced instruments with adaptive optics.Comment: 11 pages of text, 3 figures, accepted for ApJ Letters, additional info at http://cfa-www.harvard.edu/~kenyon/pf/terra/td

    Electrical transport properties of bulk Nic_{c}Fe1−c_{1-c} alloys and related spin-valve systems

    Full text link
    Within the Kubo-Greenwood formalism we use the fully relativistic, spin-polarized, screened Korringa-Kohn-Rostoker method together with the coherent-potential approximation for layered systems to calculate the resistivity for the permalloy series Nic_{c}Fe1−c_{1-c}. We are able to reproduce the variation of the resistivity across the entire series; notably the discontinuous behavior in the vicinity of the structural phase transition from bcc to fcc. The absolute values for the resistivity are within a factor of two of the experimental data. Also the giant magnetoresistance of a series of permalloy-based spin-valve structures is estimated; we are able to reproduce the trends and values observed on prototypical spin-valve structures.Comment: 6 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to PR

    Investigating the flyby scenario for the HD 141569 system

    Full text link
    HD 141569, a triple star system, has been intensively observed and studied for its massive debris disk. It was rather regarded as a gravitationally bound triple system but recent measurements of the HD 141569A radial velocity seem to invalidate this hypothesis. The flyby scenario has therefore to be investigated to test its compatibility with the observations. We present a study of the flyby scenario for the HD141569 system, by considering 3 variants: a sole flyby, a flyby associated with one planet and a flyby with two planets. We use analytical calculations and perform N-body numerical simulations of the flyby encounter. The binary orbit is found to be almost fixed by the observational constraint on a edge-on plane with respect to the observers. If the binary has had an influence on the disk structure, it should have a passing time at the periapsis between 5000 and 8000 years ago and a distance at periapsis between 600 and 900 AU. The best scenario for reproducing the disk morphology is a flyby with only 1 planet. For a 2 Mj (resp. 8 Mj) planet, its eccentricity must be around 0.2 (resp. below 0.1). In the two cases, its apoapsis is about 130 AU. Although the global disk shape is reasonably well reproduced, some features cannot be explain by the present model and the likehood of the flyby event remains an issue. Dynamically speaking, HD 141569 is still a puzzling system

    Structuring the HD 141569 A circumstellar dust disk. Impact of eccentric bound stellar companions

    Get PDF
    Scattered light images of the optically thin dust disk around the 5 Myr old star HD141569 have revealed its complex asymmetric structure. We show in this paper that the surface density inferred from the observations presents similarities with that expected from a circumprimary disk within a highly eccentric binary system. We assume that either the two M stars in the close vicinity of HD141569 are bound companions or at least one of them is an isolated binary companion. We discuss the resulting interaction with an initially axisymmetric disk. This scenario accounts for the formation of a spiral structure, a wide gap in the disk and a broad faint extension outside the truncation radius of the disk after 10-15 orbital periods with no need for massive companion(s) in the midst of the disk resolved in scattered light. The simulations match the observations and the star age if the perturber is on an elliptic orbit with a periastron distance of 930 AU and an eccentricity from 0.7 to 0.9. We find that the numerical results can be reasonably well reproduced using an analytical approach proposed to explain the formation of a spiral structure by secular perturbation of a circumprimary disk by an external bound companion. We also interpret the redness of the disk in the visible reported by Clampin et al.(2003) and show that short-lived grains one order of magnitude smaller than the blow-out size limit are abundant in the disk. The most probable reason for this is that the disk sustains high collisional activity. Finally we conclude that additional processes are required to clear out the disk inside 150 AU and that interactions with planetary companions possibly coupled with the remnant gas disk are likely candidates.Comment: 13 pages. Accepted for publication in A&A. MPEG amd AVI animations + paper available at : http://www.strw.leidenuniv.nl/~augereau/newresults.htm

    INTEGRAL/SPI γ -ray line spectroscopy : Response and background characteristics

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors.Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background.Methods. We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors.Results. Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.Peer reviewedFinal Published versio
    • …
    corecore