18 research outputs found
Proposal to produce long-lived mesoscopic superpositions through an atom-driven field interaction
We present a proposal for the production of longer-lived mesoscopic
superpositions which relies on two requirements: parametric amplification and
squeezed vacuum reservoir for cavity-field states. Our proposal involves the
interaction of a two-level atom with a cavity field which is simultaneously
subjected to amplification processes.Comment: 12 pages, title changed, text improved and refences adde
One-step generation of high-quality squeezed and EPR states in cavity QED
We show how to generate bilinear (quadratic) Hamiltonians in cavity quantum
electrodynamics (QED) through the interaction of a single driven three-level
atom with two (one) cavity modes. With this scheme it is possible to generate
one-mode mesoscopic squeezed superpositions, two-mode entanglements, and
two-mode squeezed vacuum states (such the original EPR state), without the need
for Ramsey zones and external parametric amplification. The degree of squeezing
achieved is up to 99% with currently feasible experimental parameters and the
errors due to dissipative mechanisms become practically negligible
Quantifying decoherence in continuous variable systems
We present a detailed report on the decoherence of quantum states of
continuous variable systems under the action of a quantum optical master
equation resulting from the interaction with general Gaussian uncorrelated
environments. The rate of decoherence is quantified by relating it to the decay
rates of various, complementary measures of the quantum nature of a state, such
as the purity, some nonclassicality indicators in phase space and, for two-mode
states, entanglement measures and total correlations between the modes.
Different sets of physically relevant initial configurations are considered,
including one- and two-mode Gaussian states, number states, and coherent
superpositions. Our analysis shows that, generally, the use of initially
squeezed configurations does not help to preserve the coherence of Gaussian
states, whereas it can be effective in protecting coherent superpositions of
both number states and Gaussian wave packets.Comment: Review article; 36 pages, 19 figures; typos corrected, references
adde
Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic
Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N - 27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50′ - 19°45′S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km2. Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO3 production was estimated from in situ growth assays at 1.07 kg m−2 yr−1, with a total production rate of 0.025 Gt yr−1, comparable to those of the world's largest biogenic CaCO3 deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades