131 research outputs found
Eradication of invasive birds from tropical oceanic islands: lessons learned from studies of common mynas Acridotheres tristis
Feare, C., Greenwell, P., Edwards, H., Taylor, J., Van der Woude, J
Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis
Considering a gas of self-propelled particles with binary interactions, we
derive the hydrodynamic equations governing the density and velocity fields
from the microscopic dynamics, in the framework of the associated Boltzmann
equation. Explicit expressions for the transport coefficients are given, as a
function of the microscopic parameters of the model. We show that the
homogeneous state with zero hydrodynamic velocity is unstable above a critical
density (which depends on the microscopic parameters), signaling the onset of a
collective motion. Comparison with numerical simulations on a standard model of
self-propelled particles shows that the phase diagram we obtain is robust, in
the sense that it depends only slightly on the precise definition of the model.
While the homogeneous flow is found to be stable far from the transition line,
it becomes unstable with respect to finite-wavelength perturbations close to
the transition, implying a non trivial spatio-temporal structure for the
resulting flow. We find solitary wave solutions of the hydrodynamic equations,
quite similar to the stripes reported in direct numerical simulations of
self-propelled particles.Comment: 33 pages, 11 figures, submitted to J. Phys.
Turning with the others: novel transitions in an SPP model with coupling of accelerations
We consider a three dimensional, generalized version of the original SPP
model for collective motion. By extending the factors influencing the ordering,
we investigate the case when the movement of the self-propelled particles
(SPP-s) depends on both the velocity and the acceleration of the neighboring
particles, instead of being determined solely by the former one. By changing
the value of a weight parameter s determining the relative influence of the
velocity and the acceleration terms, the system undergoes a kinetic phase
transition as a function of a behavioral pattern. Below a critical value of s
the system exhibits disordered motion, while above it the dynamics resembles
that of the SPP model. We argue that in nature evolutionary processes can drive
the strategy variable s towards the critical point, where information exchange
between the units of a system is maximal.Comment: 13 pages, 9 figures, submitted to Phys Rev
Recommended from our members
Attempted re-establishment of a sooty tern Onychoprion fuscatus breeding colony on Denis Island, Seychelles
Seychelles supports around three million nesting pairs of sooty terns. However, there have been recent declines and the colonies continue to face ongoing threats from habitat change and excessive commercial harvesting of their eggs, as well as potential threats by commercial fishing and climate change. A possible method to counter these threats is to re-establish breeding colonies on islands from which they have disappeared. An attempt was made to attract birds to a previously occupied island through habitat management, decoy birds and playback of recorded sooty tern calls. Habitat preparation involved predator eradication and tree removal to provide open ground with bare sandy areas and low herb vegetation. Overflying birds were attracted by broadcast calls, with some circling over and landing among the decoys. Large three-dimensional plastic models were superior to other models presented. This study demonstrated that large numbers of birds can be attracted by these means and that the birds then undertook behaviour associated with breeding, including egg laying by a few birds. However, after five seasons a breeding colony has not yet been established; one possible cause is the emergence of unexpected egg predators, common moorhen Gallinula chloropus and common myna Acridotheres tristis
Educational landscapes and the environmental entanglement of humans and non-humans through the starling murmuration
Recent years have seen a continued critical reflection on the “post” or “more‐than” representational landscape as well as a related critique of nature which centres on this concept as a deployment of meanings and their effects. In this paper, I want to explore the possibilities and challenges of widening access to these more entangled and performative understandings of nature and landscape through the example of winter roosting starlings and the spectacle of the starling mumuration. In doing so, the paper also explores the dominant educational constructions of nature as utilised in conservation work and informal educational television, the consideration of the latter taken up through my own work on a forthcoming BBC television series. The focus of this exploration is the RSPB Ham Wall nature reserve on the Somerset Levels, widely regarded as one of the prime locations in Britain for observing murmurations, and where the number of visitors coming specifically to view roosting starlings on a winter's evening can reach 1,000 people. While in many ways the reserve maintains conventional roles of warden‐led stewardship and observational education of nature “in its place,” I also want to suggest that the spectacle of the starling murmuration affords an opportunity to convey humans and non‐humans as embedded in a more performative understanding of conservation which challenges the predominant conventions of conservation practice. In this more reflexive educational context, the possibility exists to frame an accessible and illustrative understanding of the geographies of a more entangled human–non‐human nature
Pollutants Increase Song Complexity and the Volume of the Brain Area HVC in a Songbird
Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris) exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC) is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds
Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses
The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 µl at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections
The use of sewage treatment works as foraging sites by insectivorous bats
Sewage treatment works with percolating filter beds are known to provide profitable foraging areas for insectivorous birds due to their association with high macroinvertebrate densities. Fly larvae developing on filter beds at sewage treatment works may similarly provide a valuable resource for foraging bats. Over the last two decades, however, there has been a decline in filter beds towards a system of “activated sludge”. Insects and bat activity were surveyed at 30 sites in Scotland employing these two different types of sewage treatment in order to assess the possible implications of these changes for foraging bats. Bat activity (number of passes) recorded from broad-band bat detectors was quantified at three points within each site. The biomass of aerial insects, sampled over the same period as the detector surveys, was measured using a suction trap. The biomass of insects and activity of Pipistrellus spp. was significantly higher at filter beds than at activated sludge sites. In addition, whilst foraging activity of Pipistrellus spp. at filter beds was comparable to that of adjacent “good” foraging habitat, foraging at activated sludge sites was considerably lower. This study indicates the high potential value of an anthropogenic process to foraging bats, particularly in a landscape where their insect prey has undergone a marked decline, and suggests that the current preference for activated sludge systems is likely to reduce the value of treatment works as foraging sites for bats
Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds?
Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system
Effects of infection-induced migration delays on the epidemiology of avian influenza in wild mallard populations
Wild waterfowl populations form a natural reservoir of Avian Influenza (AI) virus, and fears exist that these birds may contribute to an AI pandemic by spreading the virus along their migratory flyways. Observational studies suggest that individuals infected with AI virus may delay departure from migratory staging sites. Here, we explore the epidemiological dynamics of avian influenza virus in a migrating mallard (Anas platyrhynchos) population with a specific view to understanding the role of infection-induced migration delays on the spread of virus strains of differing transmissibility. We develop a host-pathogen model that combines the transmission dynamics of influenza with the migration, reproduction and mortality of the host bird species. Our modeling predicts that delayed migration of individuals influences both the timing and size of outbreaks of AI virus. We find that (1) delayed migration leads to a lower total number of cases of infection each year than in the absence of migration delay, (2) when the transmission rate of a strain is high, the outbreak starts at the staging sites at which birds arrive in the early part of the fall migration, (3) when the transmission rate is low, infection predominantly occurs later in the season, which is further delayed when there is a migration delay. As such, the rise of more virulent AI strains in waterfowl could lead to a higher prevalence of infection later in the year, which could change the exposure risk for farmed poultry. A sensitivity analysis shows the importance of generation time and loss of immunity for the effect of migration delays. Thus, we demonstrate, in contrast to many current transmission risk models solely using empirical information on bird movements to assess the potential for transmission, that a consideration of infection-induced delays is critical to understanding the dynamics of AI infection along the entire flyway.<br /
- …