1,735 research outputs found
Escaping stars from young low-N clusters
With the use of N-body calculations the amount and properties of escaping
stars from low-N (N = 100 and 1000) young embedded star clusters prior to gas
expulsion are studied over the first 5 Myr of their existence. Besides the
number of stars also different initial radii and binary populations are
examined as well as virialised and collapsing clusters. It is found that these
clusters can loose substantial amounts (up to 20%) of stars within 5 Myr with
considerable velocities up to more than 100 km/s. Even with their mean
velocities between 2 and 8 km/s these stars will still be travelling between 2
and 30 pc during the 5 Myr. Therefore can large amounts of distributed stars in
star-forming regions not necessarily be counted as evidence for the isolated
formation of stars.Comment: 10 pages, 10 figures, accepted for publication by MNRA
Properties of hierarchically forming star clusters
We undertake a systematic analysis of the early (< 0.5 Myr) evolution of
clustering and the stellar initial mass function in turbulent fragmentation
simulations. These large scale simulations for the first time offer the
opportunity for a statistical analysis of IMF variations and correlations
between stellar properties and cluster richness. The typical evolutionary
scenario involves star formation in small-n clusters which then progressively
merge; the first stars to form are seeds of massive stars and achieve a
headstart in mass acquisition. These massive seeds end up in the cores of
clusters and a large fraction of new stars of lower mass is formed in the outer
parts of the clusters. The resulting clusters are therefore mass segregated at
an age of 0.5 Myr, although the signature of mass segregation is weakened
during mergers. We find that the resulting IMF has a smaller exponent
(alpha=1.8-2.2) than the Salpeter value (alpha=2.35). The IMFs in subclusters
are truncated at masses only somewhat larger than the most massive stars (which
depends on the richness of the cluster) and an universal upper mass limit of
150 Msun is ruled out. We also find that the simulations show signs of the
IGIMF effect proposed by Weidner & Kroupa, where the frequency of massive stars
is suppressed in the integrated IMF compared to the IMF in individual clusters.
We identify clusters through the use of a minimum spanning tree algorithm which
allows easy comparison between observational survey data and the predictions of
turbulent fragmentation models. In particular we present quantitative
predictions regarding properties such as cluster morphology, degree of mass
segregation, upper slope of the IMF and the relation between cluster richness
and maximum stellar mass. [abridged]Comment: 21 Pages, 25 Figure
Reinforcement Learning vs. Gradient-Based Optimisation for Robust Energy Landscape Control of Spin-1/2 Quantum Networks
We explore the use of policy gradient methods in reinforcement learning for
quantum control via energy landscape shaping of XX-Heisenberg spin chains in a
model agnostic fashion. Their performance is compared to finding controllers
using gradient-based L-BFGS optimisation with restarts, with full access to an
analytical model. Hamiltonian noise and coarse-graining of fidelity
measurements are considered. Reinforcement learning is able to tackle
challenging, noisy quantum control problems where L-BFGS optimization
algorithms struggle to perform well. Robustness analysis under different levels
of Hamiltonian noise indicates that controllers found by reinforcement learning
appear to be less affected by noise than those found with L-BFGS.Comment: 7 pages, 7 figure
Chemo-Archaeological Downsizing in a Hierarchical Universe: Impact of a Top Heavy IGIMF
We make use of a semi-analytical model of galaxy formation to investigate the
origin of the observed correlation between [a/Fe] abundance ratios and stellar
mass in elliptical galaxies. We implement a new galaxy-wide stellar initial
mass function (Top Heavy Integrated Galaxy Initial Mass Function, TH-IGIMF) in
the semi-analytic model SAG and evaluate its impact on the chemical evolution
of galaxies. The SFR-dependence of the slope of the TH-IGIMF is found to be key
to reproducing the correct [a/Fe]-stellar mass relation. Massive galaxies reach
higher [a/Fe] abundance ratios because they are characterized by more top-heavy
IMFs as a result of their higher SFR. As a consequence of our analysis, the
value of the minimum embedded star cluster mass and of the slope of the
embedded cluster mass function, which are free parameters involved in the
TH-IGIMF theory, are found to be as low as 5 solar masses and 2, respectively.
A mild downsizing trend is present for galaxies generated assuming either a
universal IMF or a variable TH-IGIMF. We find that, regardless of galaxy mass,
older galaxies (with formation redshifts > 2) are formed in shorter time-scales
(< 2 Gyr), thus achieving larger [a/Fe] values. Hence, the time-scale of galaxy
formation alone cannot explain the slope of the [a/Fe]-galaxy mass relation,
but is responsible for the big dispersion of [a/Fe] abundance ratios at fixed
stellar mass.We further test the hyphothesis of a TH-IGIMF in elliptical
galaxies by looking into mass-to-light ratios, and luminosity functions. Models
with a TH-IGIMF are also favoured by these constraints. In particular,
mass-to-light ratios agree with observed values for massive galaxies while
being overpredicted for less massive ones; this overprediction is present
regardless of the IMF considered.Comment: 24 pages, 15 figures, 2 tables. (Comments most welcome). Summited to
MNRA
Cardiovascular reactivity in a simulated job interview: the role of gender role self-concept
This study investigated the relation of gender role self-concept (G-SC) to cardiovascular
and emotional reactions to an ecologically relevant stressor in a sample of
graduating male and female university students. Thirty-seven men and 37 women
completed the Personal Attribute Questionnaire and worked on four tasks designed to
reflect common features of a job interview. Blood pressure and heart rate were measured
at baseline, during, and after each task; subjective stress was measured at baseline
and after each task. Subjective and objective stress scores were averaged across
tasks and analyzed by sex and G-SC (i.e., instrumentality, expressiveness). Results indicated
that women as a group demonstrated greater emotional reactivity, but did not
differ in their physiological reactions when compared to men. Regardless of sex, participants’
instrumentality scores contributed significantly to the variation in subjective
stress response: those scoring high on instrumentality reported less stress, but evidenced
greater blood pressure reactivity than those scoring low on instrumentality.
These results suggest that gender roles, particularly an instrumental self-concept,
may play an important role in both subjective and objective reactions to an ecologically
relevant stressor
Flow cytometric quantification of tumour endothelial cells; an objective alternative for microvessel density assessment
Assessment of microvessel density by immunohistochemical staining is subject to a considerable inter-observer variation, and this has led to variability in correlation between microvessel density and clinical outcome in different studies. In order to improve the method of microvessel density measurement in tumour biopsies, we have developed a rapid, objective and quantitative method using flow cytometry on frozen tissues. Frozen tissue sections of archival tumour material were enzymatically digested. The single-cell suspension was stained for CD31 and CD34 for flow cytometry. The number of endothelial cells was quantified using light scatter- and fluorescence-characteristics. Tumour endothelial cells were detectable in a single cell suspension, and the percentage of endothelial cells detected in 32 colon carcinomas correlated highly (r=0.84, P<0.001) with the immunohistochemical assessment of microvessel density. Flow cytometric endothelial cells quantification was found to be more sensitive especially at lower levels of immunohistochemical microvessel density measurement. The current method was found to be applicable for various tumour types and has the major advantage that it provides a retrospective and quantitative approach to the angiogenic potential of tumours
Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain
Loss-of-function mutations of NaV1.7 lead to congenital insensitivity to pain, a rare condition resulting in individuals who are otherwise normal except for the inability to sense pain, making pharmacological inhibition of NaV1.7 a promising therapeutic strategy for the treatment of pain. We characterized a novel mouse model of NaV1.7-mediated pain based on intraplantar injection of the scorpion toxin OD1, which is suitable for rapid in vivo profiling of NaV1.7 inhibitors. Intraplantar injection of OD1 caused spontaneous pain behaviors, which were reversed by co-injection with NaV1.7 inhibitors and significantly reduced in NaV1.7−/− mice. To validate the use of the model for profiling NaV1.7 inhibitors, we determined the NaV selectivity and tested the efficacy of the reported NaV1.7 inhibitors GpTx-1, PF-04856264 and CNV1014802 (raxatrigine). GpTx-1 selectively inhibited NaV1.7 and was effective when co-administered with OD1, but lacked efficacy when delivered systemically. PF-04856264 state-dependently and selectively inhibited NaV1.7 and significantly reduced OD1-induced spontaneous pain when delivered locally and systemically. CNV1014802 state-dependently, but non-selectively, inhibited NaV channels and was only effective in the OD1 model when delivered systemically. Our novel model of NaV1.7-mediated pain based on intraplantar injection of OD1 is thus suitable for the rapid in vivo characterization of the analgesic efficacy of NaV1.7 inhibitors
- …