932 research outputs found
TADPOL: A 1.3 mm Survey of Dust Polarization in Star-forming Cores and Regions
We present {\lambda}1.3 mm CARMA observations of dust polarization toward 30
star-forming cores and 8 star-forming regions from the TADPOL survey. We show
maps of all sources, and compare the ~2.5" resolution TADPOL maps with ~20"
resolution polarization maps from single-dish submillimeter telescopes. Here we
do not attempt to interpret the detailed B-field morphology of each object.
Rather, we use average B-field orientations to derive conclusions in a
statistical sense from the ensemble of sources, bearing in mind that these
average orientations can be quite uncertain. We discuss three main findings:
(1) A subset of the sources have consistent magnetic field (B-field)
orientations between large (~20") and small (~2.5") scales. Those same sources
also tend to have higher fractional polarizations than the sources with
inconsistent large-to-small-scale fields. We interpret this to mean that in at
least some cases B-fields play a role in regulating the infall of material all
the way down to the ~1000 AU scales of protostellar envelopes. (2) Outflows
appear to be randomly aligned with B-fields; although, in sources with low
polarization fractions there is a hint that outflows are preferentially
perpendicular to small-scale B-fields, which suggests that in these sources the
fields have been wrapped up by envelope rotation. (3) Finally, even at ~2.5"
resolution we see the so-called "polarization hole" effect, where the
fractional polarization drops significantly near the total intensity peak. All
data are publicly available in the electronic edition of this article.Comment: 53 pages, 37 figures -- main body (13 pp., 3 figures), source maps
(32 pp., 34 figures), source descriptions (8 pp.). Accepted by the
Astrophysical Journal Supplemen
A Risk Benefit Analysis of Mariculture as a means to Reduce the Impacts of Terrestrial Production of Food and Energy
The Scottish Aquaculture Research Forum (SARF) and WWF-UK commissioned this study to investigate whether the pressure on land and freshwater for future food and energy resources, and impacts on the climate, related to greenhouse gas (GHG) emissions, may be reduced through expansion of global mariculture. The study has undertaken a high level assessment of the ‘environmental footprint’ of global mariculture and terrestrial-based food and energy production systems through the collation and assessment of available Life Cycle Assessments (LCA) for key food products (beef, pork, chicken, freshwater finfish, marine finfish, shellfish and crustacean species) and biomass (terrestrial and algal) for energy production. The outputs of the footprint comparison were then used to assess the risks and benefits of increasing global mariculture, through the development of projected future scenarios in which mariculture contributes differing proportions of projected future food requirements. The analysis also qualitatively considered the socio-economic and wider environmental risks and benefits (e.g. in relation to ecosystem services) of global mariculture expansion, where expansion may occur geographically and whether future technological developments may help mitigate against identified impacts. The study identifies the key uncertainties and limitations of the risk/benefit analysis and makes prioritised recommendations on how these limitations can be addressed and the analysis developed for more regional or site-specific assessments
Bouncing Universes with Varying Constants
We investigate the behaviour of exact closed bouncing Friedmann universes in
theories with varying constants. We show that the simplest BSBM varying-alpha
theory leads to a bouncing universe. The value of alpha increases
monotonically, remaining approximately constant during most of each cycle, but
increasing significantly around each bounce. When dissipation is introduced we
show that in each new cycle the universe expands for longer and to a larger
size. We find a similar effect for closed bouncing universes in Brans-Dicke
theory, where also varies monotonically in time from cycle to cycle.
Similar behaviour occurs also in varying speed of light theories
Episodic Occurrence of Field‐Aligned Energetic Ions on the Dayside
The tens of kiloelectron volt ions observed in the ring current region at L ~ 3–7 generally have pancake pitch angle distributions, that is, peaked at 90°. However, in this study, by using the Van Allen Probe observations on the dayside, unexpectedly, we have found that about 5% time, protons with energies of ~30 to 50 keV show two distinct populations, having an additional field‐aligned population overlapping with the original pancake population. The newly appearing field‐aligned populations have higher occurrence rates at ~12–16 magnetic local time during geomagnetically active times. In particular, we have studied eight such events in detail and found that the source regions are located around 12 to 18 magnetic local time which coincides with our statistical result. Based on the ionospheric and geosynchronous observations, it is suggested that these energetic ions with field‐aligned pitch angle distributions probably are accelerated near postnoon in association with ionospheric disturbances that are triggered by tail injections.Plain Language SummaryProtons of different sources have different pitch angle distributions (PADs). For example, warm plasma cloak protons, which come directly from the ionosphere, have field‐aligned PADs, while ring current protons that generally originate from tail plasma sheet have pancake‐shaped PADs. In this study, unexpectedly, we have found that about 5% of the time on the dayside, protons of ring current energies show two distinct populations according to their PADs: higher fluxes of field‐aligned populations overlapping with the original pancake populations. The newly appeared field‐aligned populations have higher occurrence rates at ~12–16 magnetic local time during geomagnetically active times. In order to find the mechanism that generates these field‐aligned energetic proton populations, we have studied eight such events in detail by using the low‐altitude DMSP, POES satellites, and the NOAA‐LANL satellite at the geosynchronous orbit. The results imply that these energetic ions with field‐aligned PADs probably are accelerated by ionospheric disturbances that are triggered by tail injections. These results provide evidence of another possibly important source of the ring current ions.Key PointsWe have found that about 5% of the time on the dayside, protons with energies of ~30 to 50 keV have strong field‐aligned PADsThe field‐aligned PADs have higher occurrence rates at ~12‐16 MLT during geomagnetically active timesThese energetic field‐aligned ions possibly are accelerated by ionospheric disturbances triggered by tail injectionsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153687/1/grl60102_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153687/2/grl60102.pd
Massless D-strings and moduli stabilization in type I cosmology
We consider the cosmological evolution induced by the free energy F of a gas
of maximally supersymmetric heterotic strings at finite temperature and weak
coupling in dimension D>=4. We show that F, which plays the role of an
effective potential, has minima associated to enhanced gauge symmetries, where
all internal moduli can be attracted and dynamically stabilized. Using the fact
that the heterotic/type I S-duality remains valid at finite temperature and can
be applied at each instant of a quasi-static evolution, we find in the dual
type I cosmology that all internal NS-NS and RR moduli in the closed string
sector and the Wilson lines in the open string sector can be stabilized. For
the special case of D=6, the internal volume modulus remains a flat direction,
while the dilaton is stabilized. An essential role is played by light D-string
modes wrapping the internal manifold and whose contribution to the free energy
cannot be omitted, even when the type I string is at weak coupling. As a
result, the order of magnitude of the internal radii expectation values on the
type I side is (lambda_I alpha')^{1/2}, where lambda_I is the ten-dimensional
string coupling. The non-perturbative corrections to the type I free energy can
alternatively be described as effects of "thermal E1-instantons", whose
worldsheets wrap the compact Euclidean time cycle.Comment: 39 pages, 1 figur
The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field
The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array.
PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky
with an emphasis on synoptic observations that measure the static and
time-variable properties of the sky. During the 2.5-year campaign, PiGSS will
twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with
b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the
sky will be observed multiple times to characterize variability on time scales
of days to years. We present here observations of a 10 deg^2 region in the
Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The
PiGSS image was constructed from 75 daily observations distributed over a
4-month period and has an rms flux density between 200 and 250 microJy. This
represents a deeper image by a factor of 4 to 8 than we will achieve over the
entire 10,000 deg^2. We provide flux densities, source sizes, and spectral
indices for the 425 sources detected in the image. We identify ~100$ new flat
spectrum radio sources; we project that when completed PiGSS will identify 10^4
flat spectrum sources. We identify one source that is a possible transient
radio source. This survey provides new limits on faint radio transients and
variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous
figure remove
The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field
The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array.
PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky
with an emphasis on synoptic observations that measure the static and
time-variable properties of the sky. During the 2.5-year campaign, PiGSS will
twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with
b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the
sky will be observed multiple times to characterize variability on time scales
of days to years. We present here observations of a 10 deg^2 region in the
Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The
PiGSS image was constructed from 75 daily observations distributed over a
4-month period and has an rms flux density between 200 and 250 microJy. This
represents a deeper image by a factor of 4 to 8 than we will achieve over the
entire 10,000 deg^2. We provide flux densities, source sizes, and spectral
indices for the 425 sources detected in the image. We identify ~100$ new flat
spectrum radio sources; we project that when completed PiGSS will identify 10^4
flat spectrum sources. We identify one source that is a possible transient
radio source. This survey provides new limits on faint radio transients and
variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous
figure remove
- …