2,657 research outputs found

    Incorporation of H_2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy

    Full text link
    Incorporation mechanisms of H_2 in silica glass were studied with Raman and infrared (IR) microspectroscopy. Hydrogenated samples were prepared at temperatures between 800 deg C and 955 deg C at 2 kbar total pressure. Hydrogen fugacities (f_{H_2}) were controlled using the double capsule technique with the iron-w\"ustite (IW) buffer assemblage generating f_{H_2} of 1290-1370 bars corresponding to H_2 partial pressures (P_{H_2}) of 960-975 bars. We found that silica glass hydrogenated under such conditions contains molecular hydrogen (H_2) in addition to SiH and SiOH groups. H_2 molecules dissolved in the quenched glasses introduce a band at 4136 cm^{-1} in the Raman spectra which in comparison to that of gaseous H_2 is wider and is shifted to lower frequency. IR spectra of hydrogenated samples contain a band at 4138 cm^{-1} which we assign to the stretching vibration of H_2 molecules located in non-centrosymmetric sites. The Raman and IR spectra indicate that the dissolved H_2 molecules interact with the silicate network. We suggest that the H_2 band is the envelope of at least three components due to the occupation of at least three different interstitial sites by H_2 molecules. Both, Raman and IR spectra of hydrogenated glasses contain bands at ~2255 cm^{-1} which may be due to the vibration of SiH groups

    Heatshield material selection for advanced ballistic reentry vehicles

    Get PDF
    The Performance of staple rayon fiber and AVTEX continuous rayon fiber was evaluated as precursor materials for heatshields. The materials studied were referenced to the IRC FM5055A heatshield materials flown during the past decade. Three different arc jet facilities were used to simulate portions of the reentry environment. The IRC FM5055A and the AVTEX FM5055G, both continuous rayon fiber woven materials having the phenolic impregnant filled with carbon particles were compared. The AVTEX continuous fiber, unfilled material FM5822A was also examined to a limited extent. Test results show that the AVTEX FM5055G material provided a close substitute for the IRC FM5055A material both in terms of thermal protection and roll torque performance

    Effects of three previewing tactics on the oral reading performance of fourth-grade students

    Get PDF
    Thesis (M.S.Ed.)--University of Kansas, Curriculum and Instruction, 1984

    How Much Does Money Matter in a Direct Democracy?

    Get PDF
    The fine-structure splitting of quantum confined InxGa1-x Nexcitons is investigated using polarization-sensitive photoluminescence spectroscopy. The majority of the studied emission lines exhibits mutually orthogonal fine-structure components split by 100-340 mu eV, as measured from the cleaved edge of the sample. The exciton and the biexciton reveal identical magnitudes but reversed sign of the energy splitting.Original Publication:Supaluck Amloy, Y T Chen, K F Karlsson, K H Chen, H C Hsu, C L Hsiao, L C Chen and Per-Olof Holtz, Polarization-resolved fine-structure splitting of zero-dimensional InxGa1-xN excitons, 2011, PHYSICAL REVIEW B, (83), 20, 201307.http://dx.doi.org/10.1103/PhysRevB.83.201307Copyright: American Physical Societyhttp://www.aps.org

    Functions preserving nonnegativity of matrices

    Full text link
    The main goal of this work is to determine which entire functions preserve nonnegativity of matrices of a fixed order nn -- i.e., to characterize entire functions ff with the property that f(A)f(A) is entrywise nonnegative for every entrywise nonnegative matrix AA of size n×nn\times n. Towards this goal, we present a complete characterization of functions preserving nonnegativity of (block) upper-triangular matrices and those preserving nonnegativity of circulant matrices. We also derive necessary conditions and sufficient conditions for entire functions that preserve nonnegativity of symmetric matrices. We also show that some of these latter conditions characterize the even or odd functions that preserve nonnegativity of symmetric matrices.Comment: 20 pages; expanded and corrected to reflect referees' remarks; to appear in SIAM J. Matrix Anal. App

    Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and Atmosphere with Multiplicative White Noise

    Full text link
    The Primitive Equations are a basic model in the study of large scale Oceanic and Atmospheric dynamics. These systems form the analytical core of the most advanced General Circulation Models. For this reason and due to their challenging nonlinear and anisotropic structure the Primitive Equations have recently received considerable attention from the mathematical community. In view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the Primitive Equations and more generally. In this work we study a stochastic version of the Primitive Equations. We establish the global existence of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, LtpLxqL^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.Comment: To appear in Nonlinearit

    Regulation of major histocompatibility complex class II gene expression in trophoblast cells

    Get PDF
    Trophoblast cells are unique because they are one of the few mammalian cell types that do not express major histocompatibility complex (MHC) class II antigens, either constitutively or after exposure to IFN-γ. The absence of MHC class II antigen expression on trophoblast cells has been postulated to be one of the essential mechanisms by which the semi-allogeneic fetus evades immune rejection reactions by the maternal immune system. Consistent with this hypothesis, trophoblast cells from the placentas of women suffering from chronic inflammation of unknown etiology and spontaneous recurrent miscarriages have been reported to aberrantly express MHC class II antigens. The lack of MHC class II antigen expression on trophoblast cells is due to silencing of expression of the class II transactivator (CIITA), a transacting factor that is essential for constitutive and IFN-γ-inducible MHC class II gene transcription. Transfection of trophoblast cells with CIITA expression vectors activates both MHC class II and class Ia antigen expression, which confers on trophoblast cells both the ability to activate helper T cells, and sensitivity to lysis by cytotoxic T lymphocytes. Collectively, these studies strongly suggest that stringent silencing of CIITA (and therefore MHC class II) gene expression in trophoblast cells is critical for the prevention of immune rejection responses against the fetus by the maternal immune system. The focus of this review is to summarize studies examining the novel mechanisms by which CIITA is silenced in trophoblast cells. The elucidation of the silencing of CIITA in trophoblast cells may shed light on how the semi-allogeneic fetus evades immune rejection by the maternal immune system during pregnancy
    corecore