248 research outputs found

    Electrospray and Photoionization Mass Spectrometry for the Characterization of Organic matter in Natural Waters: A Qualitative Assessment

    Get PDF
    Fourier-transform ion cyclotron resonance mass spectrometry (MS) has demonstrated potential to revolutionize the fields of limnology and chemical oceanography by identifying the individual molecular components of organic matter in natural waters. The use of MS for this purpose is made possible by the electrospray technique which successfully ionizes polar, nonvolatile organic molecules. Another recently developed ion source, atmospheric pressure photoionization (APPI), extends MS capabilities to less polar molecules. This article presents early results on the application of APPI MS to natural organic matter. We compare APPI MS and electrospray MS data for dissolved organic matter from Lake Drummond (Virginia, USA). Collectively, electrospray and APPI MS identify more than 6000 molecular species to which we assign unique molecular formulas. Fewer than 1000 molecular species are common to both electrospray and APPI mass spectra, indicating that the techniques are highly complementary in the types of molecules they ionize. Access to a broad range of molecules provided by combining APPI and electrospray has prompted a qualitative analysis. The goal is to assess the extent to which molecular MS data correspond with elemental (CHNOS) and structural characteristics determined by combustion elemental analyses and 13C nuclear magnetic resonance (NMR). Because the data obtained by these different methods are not directly comparable, we propose a novel data analysis procedure that facilitates their comparison. The bulk elemental composition calculated from electrospray MS data are in close agreement (±15%) with values determined by combustion elemental analysis. APPI and electrospray MS detect protein contributions in agreement with 13C NMR (6 wt %) but underestimate carbohydrates relative to 13C NMR. Nevertheless, MS results agree with NMR on the relative proportions of noncarbohydrate compounds in the organic matter: lignins \u3e lipids \u3e peptides. Finally, we use a molecular mixing model to simulate a 13C NMR spectrum from the MS datasets. The correspondence of the simulated and measured 13C NMR signals (74%) suggests that, collectively, the molecular species identified by APPI and electrospray MS comprise a large portion of the organic matter in Lake Drummond. These results add credibility to electrospray and APPI MS in limnology and oceanography applications, but further characterization of ion source behavior is fundamental to the accurate interpretation of MS data

    Calcium-Mediated Actin Reset (Caar) Mediates Acute Cell Adaptations

    Get PDF
    Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in response to many physiological cues. CaAR leads to transient immobilization of organelles, drives reorganization of actin during cell cortex repair, cell spreading and wound healing, and induces long-lasting changes in gene expression. Our findings suggest that CaAR acts as fundamental facilitator of cellular adaptations in response to acute signals and stress

    Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal

    Get PDF
    IntroductionHumic substances (HS) are increasingly being applied as crop plant biostimulants because they have been shown to increase plant productivity, especially under environmentally stressful conditions. There has been intense interest in elucidating the HS molecular structures responsible for eliciting the plant biostimulant response (PBR). The polar and weakly acidic carboxylic (COOH) and phenolic hydroxyl (ArOH) functional groups play major roles in the acid nature, pH dependent solubilities, conformation, and metal- and salt-binding capabilities of HS. Reports on the role played by these groups in the PBR of HS found growth parameters being both positively and negatively correlated with COOH and ArOH functionalities.Materials and methodsTo investigate the role of COOH and ArOH in HS biostimulant activity we used a humic acid (HA), purified from an oxidized sub bituminous coal to prepare HAs with COOH groups methylated (AHA), ArOH groups acetylated (OHA), and with both COOH and ArOH groups methylated (FHA). The original HA was designated (NHA). The four HAs were subjected to elemental, 13C-NMR, FTIR, and EPR analyses and their antioxidant properties were assessed using the trolox equivalents antioxidant capacity assay (TEAC). 13C-NMR and FTIR analysis revealed significant alkylation/acetylation. To determine the effects of alkylating/acetylating these functional groups on the HA elicited PBR, the HAs were evaluated in a plant bioassay on corn (Zea mays L.) seedling under nutrient and non-nutrient stressed conditions. Treatments consisted of the four HAs applied to the soil surface at a concentration of 80 mg C L−1, in 50 ml DI H2O with the control plants receiving 50ml DI H2O.ResultsThe HA-treated plants, at both fertilization rates, were almost always significantly larger than their respective control plants. However, the differences produced under nutrient stress were always much greater than those produced under nutrient sufficiency, supporting previous reports that HA can reduce the effects of stress on plant growth. In addition, for the most part, the HAs with the alkylated/acetylated groups produced plants equal to or larger than plants treated with NHA.ConclusionThese results suggests that COOH and ArOH groups play a limited or no role in the HA elicited PBR. Alternatively, the HA pro-oxidant to antioxidant ratio may play a role in the magnitude of the biostimulant response

    Early relapse after high‐dose melphalan autologous stem cell transplant predicts inferior survival and is associated with high disease burden and genetically high‐risk disease in multiple myeloma

    Get PDF
    Predicting patient outcome in multiple myeloma remains challenging despite the availability of standard prognostic biomarkers. We investigated outcome for patients relapsing early from intensive therapy on NCRI Myeloma XI. Relapse within 12 months of autologous stem cell transplant was associated with markedly worse median progression‐free survival 2 (PFS2) of 18 months and overall survival (OS) of 26 months, compared to median PFS2 of 85 months and OS of 91 months for later relapsing patients despite equal access to and use of subsequent therapies, highlighting the urgent need for improved outcome prediction and early intervention strategies for myeloma patients

    Results of the randomized phase IIB ADMIRE trial of FCR with or without mitoxantrone in previously untreated CLL

    Get PDF
    ADMIRE was a multi-center, randomized-controlled, open, phase IIB superiority trial in previously untreated Chronic Lymphocytic Leukemia (CLL). Conventional frontline therapy in fit patients is fludarabine, cyclophosphamide and rituximab (FCR). Initial evidence from non-randomized Phase II trials suggested that the addition of mitoxantrone to FCR (FCM-R) improved remission rates. 215 patients were recruited to assess the primary endpoint of complete remission (CR) rates according to IWCLL criteria. Secondary endpoints were progression-free survival (PFS), overall survival (OS), overall response rate, minimal residual disease (MRD) negativity and safety. At final analysis, CR rates were 69.8% FCR vs 69.3% FCM-R [adjusted odds ratio (OR): 0.97; 95%CI: (0.53-1.79), P=0.932]. MRD-negativity rates were 59.3% FCR vs 50.5% FCM-R [adjusted OR: 0.70; 95% CI: (0.39-1.26), P=0.231]. During treatment, 60.0% (n=129) of participants received G-CSF as secondary prophylaxis for neutropenia, a lower proportion on FCR compared with FCM-R (56.1 vs 63.9%). The toxicity of both regimens was acceptable. There are no significant differences between the treatment groups for PFS and OS. The trial demonstrated that the addition of mitoxantrone to FCR did not increase the depth of response. Oral FCR was well tolerated and resulted in impressive responses in terms of CR rates and MRD negativity compared to historical series with intravenous chemotherapy

    Measurement of soil carbon oxidation state and oxidative ratio by (13)C nuclear magnetic resonance

    Get PDF
    Extent: 14p.The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O₂and CO₂ fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO₂sink using atmospheric measurements of changing O₂ and CO₂levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known Cox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state ¹³C NMR with the molecular mixing model, agrees with elemental analyses to ±0.036 Cox units (±0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of −0.26 and a range from −0.45 to 0.30, corresponding to OR values of 1.08 ± 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated with the fire had an OR of 1.091 (±0.003). Fire appears to be a major factor driving the soil C pool to higher oxidation states and lower OR values. Episodic fluxes caused by disturbances like fire may have substantially different ORs from ecosystem respiration fluxes and therefore should be better quantified to reduce uncertainties associated with our understanding of the global atmospheric carbon budget.W. C. Hockaday, C. A. Masiello, J. T. Randerson, R. J. Smernik, J. A. Baldock, O. A. Chadwick and J. W. Harde

    Costs and staffing resource requirements for adaptive clinical trials: quantitative and qualitative results from the Costing Adaptive Trials project

    Get PDF
    Background Adaptive designs offer great promise in improving the efficiency and patient-benefit of clinical trials. An important barrier to further increased use is a lack of understanding about which additional resources are required to conduct a high-quality adaptive clinical trial, compared to a traditional fixed design. The Costing Adaptive Trials (CAT) project investigated which additional resources may be required to support adaptive trials. Methods We conducted a mock costing exercise amongst seven Clinical Trials Units (CTUs) in the UK. Five scenarios were developed, derived from funded clinical trials, where a non-adaptive version and an adaptive version were described. Each scenario represented a different type of adaptive design. CTU staff were asked to provide the costs and staff time they estimated would be needed to support the trial, categorised into specified areas (e.g. statistics, data management, trial management). This was calculated separately for the non-adaptive and adaptive version of the trial, allowing paired comparisons. Interviews with 10 CTU staff who had completed the costing exercise were conducted by qualitative researchers to explore reasons for similarities and differences. Results Estimated resources associated with conducting an adaptive trial were always (moderately) higher than for the non-adaptive equivalent. The median increase was between 2 and 4% for all scenarios, except for sample size re-estimation which was 26.5% (as the adaptive design could lead to a lengthened study period). The highest increase was for statistical staff, with lower increases for data management and trial management staff. The percentage increase in resources varied across different CTUs. The interviews identified possible explanations for differences, including (1) experience in adaptive trials, (2) the complexity of the non-adaptive and adaptive design, and (3) the extent of non-trial specific core infrastructure funding the CTU had. Conclusions This work sheds light on additional resources required to adequately support a high-quality adaptive trial. The percentage increase in costs for supporting an adaptive trial was generally modest and should not be a barrier to adaptive designs being cost-effective to use in practice. Informed by the results of this research, guidance for investigators and funders will be developed on appropriately resourcing adaptive trials

    Assessment of ibrutinib plus rituximab in front-line CLL (FLAIR trial): study protocol for a phase III randomised controlled trial

    Get PDF
    Background Treatment of chronic lymphocytic leukaemia (CLL) has seen a substantial improvement over the last few years. Combination immunochemotherapy, such as fludarabine, cyclophosphamide and rituximab (FCR), is now standard first-line therapy. However, the majority of patients relapse and require further therapy, and so new, effective, targeted therapies that improve remission rates, reduce relapses, and have fewer side effects, are required. The FLAIR trial will assess whether ibrutinib plus rituximab (IR) is superior to FCR in terms of progression-free survival (PFS). Methods/design FLAIR is a phase III, multicentre, randomised, controlled, open, parallel-group trial in patients with previously untreated CLL. A total of 754 participants will be randomised on a 1:1 basis to receive standard therapy with FCR or IR. Participants randomised to FCR will receive a maximum of six 28-day treatment cycles. Participants randomised to IR will receive six 28-day cycles of rituximab, and ibrutinib taken daily for 6 years until minimal residual disease (MRD) negativity has been recorded for the same amount of time as it took to become MRD negative, or until disease progression. The primary endpoint is PFS according to the International Workshop on CLL (IWCLL) criteria. Secondary endpoints include: overall survival; proportion of participants with undetectable MRD; response to therapy by IWCLL criteria; safety and toxicity; health-related quality of life (QoL); and cost-effectiveness. Discussion The trial aims to provide evidence for the future first-line treatment of CLL patients by assessing whether IR is superior to FCR in terms of PFS, and whether toxicity rates are favourable. Trial registration ISRCTN01844152. Registered on 8 August 2014, EudraCT number 2013-001944-76. Registered on 26 April 2013
    corecore