165 research outputs found

    Screening for childhood anaemia using copper sulphate densitometry

    Get PDF
    Objective. To evaluate copper sulphate densitometry to screen for childhood anaemia in a primary care setting, with a view to identifying children requiring definitive diagnostic testing and treatment. Design. A cross-sectional screening study. Results of densitometry with a copper sulphate solution of specific gravity (SG) 1.048, corresponding to a haemoglobin (Hb) concentration of 10 g/dl, were compared with laboratory Hb determination. Setting. Outpatient department of Pretoria Academic Hospital (73 children) and a local cr_che (27 children). Subjects. One hundred consecutive children, aged between 6 months and 6 years, with informed written consent by parents. Outcome measure(s). Accuracy of copper sulphate densitometry in screening for Hb concentration below 10 g/dl in terms of sensitivity, specificity, positive and negative predictive values, as well as likelihood ratio. Results. The prevalence of anaemia (Hb < 10 g/dl) was 17% (95% confidence interval (CI) 10.2; 25.8). Copper sulphate densitometry had a sensitivity of 88.2% (95% CI 62.3; 97.9), a specificity of 89.2% (95% CI 79.9; 94.6), a positive predictive value of 62.5% (95% CI 40.8; 80.5) and a negative predictive value of 97.4% (95%CI 90.0; 99.5) in screening for anaemia. The likelihood ratio of a positive screening test was 8.17. Conclusions. Copper sulphate densitometry was accurate in screening for childhood anaemia. (South African Medical Journal: 2002 92(12): 978-981

    ESUR prostate MR guidelines 2012

    Get PDF
    The aim was to develop clinical guidelines for multi-parametric MRI of the prostate by a group of prostate MRI experts from the European Society of Urogenital Radiology (ESUR), based on literature evidence and consensus expert opinion. True evidence-based guidelines could not be formulated, but a compromise, reflected by “minimal” and “optimal” requirements has been made. The scope of these ESUR guidelines is to promulgate high quality MRI in acquisition and evaluation with the correct indications for prostate cancer across the whole of Europe and eventually outside Europe. The guidelines for the optimal technique and three protocols for “detection”, “staging” and “node and bone” are presented. The use of endorectal coil vs. pelvic phased array coil and 1.5 vs. 3 T is discussed. Clinical indications and a PI-RADS classification for structured reporting are presented

    Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand

    Get PDF
    Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs) in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL) efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM) of PL (26 nm). Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.%) of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585) was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26–31 nm) and high QY of PL (35–55%)

    The concordance between the volume hotspot and the grade hotspot: a 3-D reconstructive model using the pathology outputs from the PROMIS trial.

    Get PDF
    The rationale for directing targeted biopsy towards the centre of lesions has been questioned in light of prostate cancer grade heterogeneity. In this study, we assess the assumption that the maximum cancer Gleason grade (Gleason grade hotspot) lies within the maximum dimension (volume hotspot) of a prostate cancer lesion. 3-D histopathological models were reconstructed using the outputs of the 5-mm transperineal mapping (TPM) biopsies used as the reference test in the pilot phase of Prostate Mri Imaging Study (PROMIS), a paired validating cohort study investigating the performance of multi-parametric magnetic resonance imaging (MRI) against transrectal ultrasound (TRUS) biopsies. The prostate was fully sampled with 5 mm intervals; each core was separately labelled, inked and orientated in space to register 3-D cancer lesions location. The data from the histopathology results were used to create a 3-D interpolated reconstruction of each lesion and identify the spatial coordinates of the largest dimension (volume hot spot) and highest Gleason grade (Gleason grade hotspot) and assess their concordance. Ninety-four men, with median age 62 years (interquartile range, IQR= 58-68) and median PSA 6.5 ng ml(-1) (4.6-8.8), had a median of 80 (I69-89) cores each with a median of 4.5 positive cores (0-12). In the primary analysis, the prevalence of homogeneous lesions was 148 (76%; 95% confidence interval (CI) ±6.0%). In all, 184 (94±3.2%) lesions showed concordant hotspots and 11/47 (23±12.1%) of heterogeneous lesions showed discordant hotspots. The median 3-D distance between discordant hotspots was 12.8 mm (9.9-15.5). These figures remained stable on secondary analyses using alternative reconstructive assumptions. Limitations include a certain degree of error within reconstructed models. Guiding one biopsy needle to the maximum cancer diameter would lead to correct Gleason grade attribution in 94% of all lesions and 79% of heterogeneous ones if a true hit was obtained. Further correlation of histological lesions, their MRI appearance and the detectability of these hotspots on MRI will be undertaken once PROMIS results are released

    Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression

    Get PDF
    INTRODUCTION: Genomic and transcriptomic alterations affecting key cellular processes such us cell proliferation, differentiation and genomic stability are considered crucial for the development and progression of cancer. Most invasive breast carcinomas are known to derive from precursor in situ lesions. It is proposed that major global expression abnormalities occur in the transition from normal to premalignant stages and further progression to invasive stages. Serial analysis of gene expression (SAGE) was employed to generate a comprehensive global gene expression profile of the major changes occurring during breast cancer malignant evolution. METHODS: In the present study we combined various normal and tumor SAGE libraries available in the public domain with sets of breast cancer SAGE libraries recently generated and sequenced in our laboratory. A recently developed modified t test was used to detect the genes differentially expressed. RESULTS: We accumulated a total of approximately 1.7 million breast tissue-specific SAGE tags and monitored the behavior of more than 25,157 genes during early breast carcinogenesis. We detected 52 transcripts commonly deregulated across the board when comparing normal tissue with ductal carcinoma in situ, and 149 transcripts when comparing ductal carcinoma in situ with invasive ductal carcinoma (P < 0.01). CONCLUSION: A major novelty of our study was the use of a statistical method that correctly accounts for the intra-SAGE and inter-SAGE library sources of variation. The most useful result of applying this modified t statistics beta binomial test is the identification of genes and gene families commonly deregulated across samples within each specific stage in the transition from normal to preinvasive and invasive stages of breast cancer development. Most of the gene expression abnormalities detected at the in situ stage were related to specific genes in charge of regulating the proper homeostasis between cell death and cell proliferation. The comparison of in situ lesions with fully invasive lesions, a much more heterogeneous group, clearly identified as the most importantly deregulated group of transcripts those encoding for various families of proteins in charge of extracellular matrix remodeling, invasion and cell motility functions

    Genomic Evaluation of Multiparametric Magnetic Resonance Imaging-visible and -nonvisible Lesions in Clinically Localised Prostate Cancer

    Get PDF
    Background The prostate cancer (PCa) diagnostic pathway is undergoing a radical change with the introduction of multiparametric magnetic resonance imaging (mpMRI), genomic testing, and different prostate biopsy techniques. It has been proposed that these tests should be used in a sequential manner to optimise risk stratification. Objective To characterise the genomic, epigenomic, and transcriptomic features of mpMRI-visible and -nonvisible PCa in clinically localised disease. Design, setting, and participants Multicore analysis of fresh prostate tissue sampled immediately after radical prostatectomy was performed for intermediate- to high-risk PCa. Intervention Low-pass whole-genome, exome, methylation, and transcriptome profiling of patient tissue cores taken from microscopically benign and cancerous areas in the same prostate. Circulating free and germline DNA was assessed from the blood of five patients. Outcome measurement and statistical analysis Correlations between preoperative mpMRI and genomic characteristics of tumour and benign prostate samples were assessed. Gene profiles for individual tumour cores were correlated with existing genomic classifiers currently used for prognostication. Results and limitations A total of 43 prostate cores (22 tumour and 21 benign) were profiled from six whole prostate glands. Of the 22 tumour cores, 16 were tumours visible and six were tumours nonvisible on mpMRI. Intratumour genomic, epigenomic, and transcriptomic heterogeneity was found within mpMRI-visible lesions. This could potentially lead to misclassification of patients using signatures based on copy number or RNA expression. Moreover, three of the six cores obtained from mpMRI-nonvisible tumours harboured one or more genetic alterations commonly observed in metastatic castration-resistant PCa. No circulating free DNA alterations were found. Limitations include the small cohort size and lack of follow-up. Conclusions Our study supports the continued use of systematic prostate sampling in addition to mpMRI, as avoidance of systematic biopsies in patients with negative mpMRI may mean that clinically significant tumours harbouring genetic alterations commonly seen in metastatic PCa are missed. Furthermore, there is inconsistency in individual genomics when genomic classifiers are applied. Patient summary Our study shows that tumour heterogeneity within prostate tumours visible on multiparametric magnetic resonance imaging (mpMRI) can lead to misclassification of patients if only one core is used for genomic analysis. In addition, some cancers that were missed by mpMRI had genomic aberrations that are commonly seen in advanced metastatic prostate cancer. Avoiding biopsies in mpMRI-negative cases may mean that such potentially lethal cancers are missed

    B →Vℓ+ℓ− in the Standard Model from light-cone sum rules

    Get PDF
    We present BqρB_q\to\rho, BqωB_q\to\omega, BqKB_q\to K^*, BsKB_s\to K^* and BsϕB_s\to \phi form factors from light-cone sum rules (LCSR) at O(αs)\mathcal{O}(\alpha_s) for twist-2 and 3 and O(αs0)\mathcal{O}(\alpha_s^0) for twist-4 with updated hadronic input parameters. Three asymptotic light-cone distribution amplitudes of twist-44 (and 55) are determined, necessary for the form factors to obey the equations of motion. It is argued that the latter constrain the uncertainty of tensor-to-vector form factor ratios thereby improving the prediction of zeros of helicity amplitudes of major importance for BKB\to K^*\ell\ell angular observables. We provide easy-to-use fits to the LCSR results, including the full error correlation matrix, in all modes at low q2q^2 as well as combined fits to LCSR and lattice results covering the entire kinematic range for BqKB_q\to K^*, BsKB_s\to K^* and BsϕB_s\to \phi. The error correlation matrix avoids the problem of overestimating the uncertainty in phenomenological applications. Using the new form factors and recent computations of non-factorisable contributions we provide Standard Model predictions for BKγB\to K^*\gamma as well as BK+B\to K^*\ell^+\ell^- and Bsϕμ+μB_s\to\phi\mu^+\mu^- at low dilepton invariant mass. Employing our B(ρ,ω)B \to (\rho,\omega) form factor results we extract the CKM element Vub|V_\mathrm{ub}| from the semileptonic decays B(ρ,ω)νB\to(\rho,\omega) \ell\nu and find good agreement with other exclusive determinations.Comment: 64 pages, 7 figures, 15 tables. v3: Minor clarifications, numerics unchanged. Matches version published in JHE

    Fstl1 Antagonizes BMP Signaling and Regulates Ureter Development

    Get PDF
    Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling
    corecore