275 research outputs found

    Automatic object segmentation using perceptual grouping of regions with contextual constraints

    Get PDF
    Image segmentation is still considered a very challenging subject despite years of research effort poured into the field. The problem is exacerbated when there is need for specific object detection. Since objects can be visually non-homogeneous, techniques that attempt to segment images into visually uniform regions using only the bottom-up cues, tend to fail. We propose a novel two-step model that incorporates both bottom-up information and top-down object constraints. Firstly, a set of uniform regions are generated using an extension of contour detection, seeded region growing, and graph-based methods. The second step applies co-occurrence constraints on the image regions in order to perceptually group regions into objects. This unsupervised segmentation process models each object using higher-level knowledge in the form of visual co-occurrences of its constituent parts. Experiments on the horse and ImageCLEF databases show that the proposed technique performs comparably well with existing state-of-the-art techniques

    T Cell Migration from Inflamed Skin to Draining Lymph Nodes Requires Intralymphatic Crawling Supported by ICAM-1/LFA-1 Interactions.

    Get PDF
    T cells are the most abundant cell type found in afferent lymph, but their migration through lymphatic vessels (LVs) remains poorly understood. Performing intravital microscopy in the murine skin, we imaged T cell migration through afferent LVs in vivo. T cells entered into and actively migrated within lymphatic capillaries but were passively transported in contractile collecting vessels. Intralymphatic T cell number and motility were increased during contact-hypersensitivity-induced inflammation and dependent on ICAM-1/LFA-1 interactions. In vitro, blockade of endothelial cell-expressed ICAM-1 reduced T cell adhesion, crawling, and transmigration across lymphatic endothelium and decreased T cell advancement from capillaries into lymphatic collectors in skin explants. In vivo, T cell migration to draining lymph nodes was significantly reduced upon ICAM-1 or LFA-1 blockade. Our findings indicate that T cell migration through LVs occurs in distinct steps and reveal a key role for ICAM-1/LFA-1 interactions in this process

    Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels.

    Get PDF
    The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreER <sup>T2</sup> line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities

    The importance of multimodality in sarcasm detection for sentiment analysis

    Get PDF
    Sentiment analysis is the computational study of opinions given by the users of online media platforms e.g. Twitter, Facebook, Instagram. The output will be in the form of polarity: positive, negative or indifferent. The field has become very useful for the industry as it can feed them the information of what is sought after by their customers in a given time. It has also rapidly became a topic of interest in the research world, for its importance and subjectivity. One of the most challenging issue in sentiment analysis is sarcasm. The existence of sarcasm is mostly ignored by the researchers in the field of sentiment analysis as it is considered to be too complex. Sarcasm is what most researchers regarded as a subset of irony. It is the utterance of positive statement with negative intent. Intent is hard to detect not only for computers but also for humans. The listener is deemed to have a certain degree of background knowledge or context of what the speaker is saying to understand sarcasm. The researches that takes sarcasm into account or solely focuses on sarcasm is in the trend of using context outside the target word for sarcasm detection, and the most popular approach is deep learning. However, both deep learning and context need a lot of features. In this paper, we will look at some researches that focuses on sarcasm detection and their agreement that more than text is needed to properly detect sarcasm. Also in this paper is the trends undergone by sarcasm detection researchers and their proposed techniques

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    Characterisation and radioimmunotherapy of L19-SIP, an anti-angiogenic antibody against the extra domain B of fibronectin, in colorectal tumour models

    Get PDF
    Angiogenesis is a characteristic feature of tumours and other disorders. The human monoclonal antibody L19- SIP targets the extra domain B of fibronectin, a marker of angiogenesis expressed in a range of tumours. The aim of this study was to investigate whole body distribution, tumour localisation and the potential of radioimmunotherapy with the L19-small immunoprotein (SIP) in colorectal tumours. Two colorectal tumour models with highly different morphologies, the SW1222 and LS174T xenografts, were used in this study. Localisation and retention of the L19-SIP antibody at tumour vessels was demonstrated using immunohistochemistry and Cy3-labelled L19-SIP. Whole body biodistribution studies in both tumour models were carried out with 125I-labelled L19-SIP. Finally, 131I-labelled antibody was used to investigate the potential of radioimmunotherapy in SW1222 tumours. Using immunohistochemistry, we confirmed extra domain B expression in the tumour vasculature. Immunofluorescence demonstrated localisation and retention of injected Cy3-labelled L19-SIP at the abluminal side of tumour vessels. Biodistribution studies using a 125I-labelled antibody showed selective tumour uptake in both models. Higher recorded values for localisation were found in the SW1222 tumours than in the LS174T (7.9 vs 6.6 %ID g−1), with comparable blood clearance for both models. Based on these results, a radioimmunotherapy study was performed in the SW1222 xenograft using 131I-Labelled L19-SIP (55.5 MBq), which showed selective tumour uptake, tumour growth inhibition and improved survival. Radio- and fluorescence-labelled L19-SIP showed selective localisation and retention at vessels of two colorectal xenografts. Furthermore, 131I-L19-SIP shows potential as a novel treatment of colorectal tumours, and provides the foundation to investigate combined therapies in the same tumour models

    Deciphering biomarkers for leptomeningeal metastasis in malignant hemopathies (Lymphoma/Leukemia) patients by comprehensive multipronged proteomics characterization of cerebrospinal fluid

    Get PDF
    In the present work, leptomeningeal disease, a very destructive form of systemic cancer, was characterized from several proteomics points of view. This pathology involves the invasion of the leptomeninges by malignant tumor cells. The tumor spreads to the central nervous system through the cerebrospinal fluid (CSF) and has a very grim prognosis; the average life expectancy of patients who suffer it does not exceed 3 months. The early diagnosis of leptomeningeal disease is a challenge because, in most of the cases, it is an asymptomatic pathology. When the symptoms are clear, the disease is already in the very advanced stages and life expectancy is low. Consequently, there is a pressing need to determine useful CSF proteins to help in the diagnosis and/or prognosis of this disease. For this purpose, a systematic and exhaustive proteomics characterization of CSF by multipronged proteomics approaches was performed to determine different protein profiles as potential biomarkers. Proteins such as PTPRC, SERPINC1, sCD44, sCD14, ANPEP, SPP1, FCGR1A, C9, sCD19, and sCD34, among others, and their functional analysis, reveals that most of them are linked to the pathology and are not detected on normal CSF. Finally, a panel of biomarkers was verified by a prediction model for leptomeningeal disease, showing new insights into the research for potential biomarkers that are easy to translate into the clinic for the diagnosis of this devastating disease.We gratefully acknowledge financial support from the Spanish Health Institute, Carlos III (ISCIII), for the grants: FIS PI14/01538, FIS PI17/01930 and CB16/12/00400. We also acknowledge Fondos FEDER (EU) and Junta Castilla-León (COVID-19 grant COV20EDU/00187). The Proteomics Unit belongs to ProteoRed, PRB3-ISCIII, supported by grant PT17/0019/0023 of the PE I + D + I2017-2020, funded by ISCIII and FEDER—Norma Galicia is supported by the CONACYT Program. P. Juanes-Velasco is supported by JCYL PhD Program “Nos Impulsa-JCYL” and scholarship JCYLEDU/601/2020

    Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate T cell de-adhesion and passive transport by flow in inflamed afferent lymphatics.

    Get PDF
    T cell migration via afferent lymphatics to draining lymph nodes (dLNs) depends on expression of CCR7 in T cells and CCL21 in the lymphatic vasculature. Once T cells have entered lymphatic capillaries, they slowly migrate into contracting collecting vessels. Here, lymph flow picks up, inducing T cell detachment and rapid transport to the dLNs. We find that the atypical chemokine receptor 4 (ACKR4), which binds and internalizes CCL19 and CCL21, is induced by lymph flow in endothelial cells lining lymphatic collectors, enabling them to scavenge these chemokines. In the absence of ACKR4, migration of T cells to dLNs in TPA-induced inflammation is significantly reduced. While entry into capillaries is not impaired, T cells accumulate in the ACKR4-deficient dermal collecting vessel segments. Overall, our findings identify an ACKR4-mediated mechanism by which lymphatic collectors facilitate the detachment of lymph-borne T cells in inflammation and their transition from crawling to free-flow toward the dLNs
    corecore