324 research outputs found

    Stability of continuously pumped atom lasers

    Get PDF
    A multimode model of a continuously pumped atom laser is shown to be unstable below a critical value of the scattering length. Above the critical scattering length, the atom laser reaches a steady state, the stability of which increases with pumping. Below this limit the laser does not reach a steady state. This instability results from the competition between gain and loss for the excited states of the lasing mode. It will determine a fundamental limit for the linewidth of an atom laser beam.Comment: 4 page

    Classical noise and flux: the limits of multi-state atom lasers

    Get PDF
    By direct comparison between experiment and theory, we show how the classical noise on a multi-state atom laser beam increases with increasing flux. The trade off between classical noise and flux is an important consideration in precision interferometric measurement. We use periodic 10 microsecond radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein condensate. The resulting atom laser beam has suprising structure which is explained using three dimensional simulations of the five state Gross-Pitaevskii equations.Comment: 4 pages, 3 figure

    Achieving peak brightness in an atom laser

    Get PDF
    In this paper we present experimental results and theory on the first continuous (long pulse) Raman atom laser. The brightness that can be achieved with this system is three orders of magnitude greater than has been previously demonstrated in any other continuously outcoupled atom laser. In addition, the energy linewidth of a continuous atom laser can be made arbitrarily narrow compared to the mean field energy of a trapped condensate. We analyze the flux and brightness of the atom laser with an analytic model that shows excellent agreement with experiment with no adjustable parameters.Comment: 4 pages, 4 black and white figures, submitted to Physical Revie

    Control of an atom laser using feedback

    Get PDF
    A generalised method of using feedback to control Bose-Einstein condensates is introduced. The condensates are modelled by the Gross-Pitaevskii equation, so only semiclassical fluctations can be suppressed, and back-action from the measurement is ignored. We show that for any available control, a feedback scheme can be found to reduce the energy while the appropriate moment is still dynamic. We demonstrate these schemes by considering a condensate trapped in a harmonic potential that can be modulated in strength and position. The formalism of our feedback scheme also allows the inclusion of certain types of non-linear controls. If the non-linear interaction between the atoms can be controlled via a Feshbach resonance, we show that the feedback process can operate with a much higher efficiency.Comment: 6 pages, 7 figure

    On the duality between the hyperbolic Sutherland and the rational Ruijsenaars-Schneider models

    Full text link
    We consider two families of commuting Hamiltonians on the cotangent bundle of the group GL(n,C), and show that upon an appropriate single symplectic reduction they descend to the spectral invariants of the hyperbolic Sutherland and of the rational Ruijsenaars-Schneider Lax matrices, respectively. The duality symplectomorphism between these two integrable models, that was constructed by Ruijsenaars using direct methods, can be then interpreted geometrically simply as a gauge transformation connecting two cross sections of the orbits of the reduction group.Comment: 16 pages, v2: comments and references added at the end of the tex

    Observation of shock waves in a large Bose-Einstein condensate

    Full text link
    We observe the formation of shock waves in a Bose-Einstein condensate containing a large number of sodium atoms. The shock wave is initiated with a repulsive, blue-detuned light barrier, intersecting the BEC, after which two shock fronts appear. We observe breaking of these waves when the size of these waves approaches the healing length of the condensate. At this time, the wave front splits into two parts and clear fringes appear. The experiment is modeled using an effective 1D Gross-Pitaevskii-like equation and gives excellent quantitative agreement with the experiment, even though matter waves with wavelengths two orders of magnitude smaller than the healing length are present. In these experiments, no significant heating or particle loss is observed.Comment: 7 pages, 7 figure

    Lie point symmetries and first integrals: the Kowalevsky top

    Full text link
    We show how the Lie group analysis method can be used in order to obtain first integrals of any system of ordinary differential equations. The method of reduction/increase of order developed by Nucci (J. Math. Phys. 37, 1772-1775 (1996)) is essential. Noether's theorem is neither necessary nor considered. The most striking example we present is the relationship between Lie group analysis and the famous first integral of the Kowalevski top.Comment: 23 page

    Heisenberg-limited metrology with a squeezed vacuum state, three-mode mixing, and information recycling

    Get PDF
    We have previously shown that quantum-enhanced atom interferometry can be achieved by mapping the quantum state of squeezed optical vacuum to one of the atomic inputs via a beamsplitter-like process [Phys. Rev. A 90, 063630 (2014)]. Here we ask the question: is a better phase sensitivity possible if the quantum state transfer (QST) is described by a three-mode-mixing model, rather than a beamsplitter? The answer is yes, but only if the portion of the optical state not transferred to the atoms is incorporated via information recycling. Surprisingly, our scheme gives a better sensitivity for lower QST efficiencies and with a sufficiently large degree of squeezing can attain near-Heisenberg-limited sensitivities for arbitrarily small QST efficiencies. Furthermore, we use the quantum Fisher information to demonstrate the near optimality of our scheme

    Strong relative intensity squeezing by 4-wave mixing in Rb vapor

    Get PDF
    We have measured -3.5 dB (-8.1 dB corrected for losses) relative intensity squeezing between the probe and conjugate beams generated by stimulated, nondegenerate four-wave mixing in hot rubidium vapor. Unlike early observations of squeezing in atomic vapors based on saturation of a two-level system, our scheme uses a resonant nonlinearity based on ground-state coherences in a three-level system. Since this scheme produces narrowband, squeezed light near an atomic resonance it is of interest for experiments involving cold atoms or atomic ensembles.Comment: Submitted to Optics Letter

    Generating quadrature squeezing in an atom laser through self-interaction

    Get PDF
    We describe a scheme for creating quadrature- and intensity-squeezed atom lasers that do not require squeezed light as an input. The beam becomes squeezed due to nonlinear interactions between the atoms in the beam in an analogue to optical Kerr squeezing. We develop an analytic model of the process which we compare to a detailed stochastic simulation of the system using phase space methods. Finally we show that significant squeezing can be obtained in an experimentally realistic system and suggest ways of increasing the tunability of the squeezing
    • …
    corecore