81 research outputs found

    TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila

    Get PDF
    Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities

    Incidence and outcome of acquired demyelinating syndromes in Dutch children: update of a nationwide and prospective study

    Get PDF
    Introduction: Acquired demyelinating syndromes (ADS) are immune-mediated demyelinating disorders of the central nervous system in children. A nationwide, multicentre and prospective cohort study was initiated in the Netherlands in 2006, with a reported ADS incidence of 0.66/100,000 per year and MS incidence of 0.15/100,000 per year in the period between 2007 and 2010. In this study, we provide an update on the incidence and the long-term follow-up of ADS in the Netherlands. Methods: Children < 18 years with a first attack of demyelination were included consecutively from January 2006 to December 2016. Diagnoses were based on the International Paediatric MS study group consensus criteria. Outcome data were collected by neurological and neuropsychological assessments, and telephone call assessments. Results: Between 2011 and 2016, 55/165 of the ADS patients were diagnosed with MS (33%). This resulted in an increased ADS and MS incidence of 0.80/100,000 per year and 0.26/100,000 per year, respectively. Since 2006 a total of 243 ADS patients have been included. During follow-up (median 55 months, IQR 28ā€“84), 137 patients were diagnosed with monophasic disease (56%), 89 with MS (37%) and 17 with multiphasic disease other than MS (7%). At least one form of residual deficit including cognitive impairment was observed in 69% of all ADS patients, even in monophasic ADS. An Expanded Disability Status Scale score of ā‰„ 5.5 was reached in 3/89 MS patients (3%). Conclusion: The reported incidence of ADS in Dutch children has increased since 2010. Residual deficits are common in this group, even in monophasic patients. Therefore, long-term follow-up in ADS patients is warranted

    TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila

    Get PDF
    Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities

    Biomarker candidates of neurodegeneration in Parkinsonā€™s disease for the evaluation of disease-modifying therapeutics

    Get PDF
    Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinsonā€™s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of Ī±-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies

    Effects of a multimodal exercise program on the functional capacity of Parkinson's disease patients considering disease severity and gender

    Get PDF
    The purpose of this study was to investigate the effects of a multimodal exercise program (MEP) on the functional capacity of patients with Parkinson's disease (PD) according to disease severity and gender. Fourteen patients with PD participated in the study and were distributed into groups according to 1) stage of disease and 2) gender. Functional capacity was evaluated before and after 6 months of intervention. The overall PD patient group improved their coordination and strength. Men and women improved in strength performance after exercise. Men also improved on coordination. For severity of disease, the unilateral group improved in strength, while the bilateral group improved in strength, balance, coordination and the UPDRS-functional score. In conclusion, a MEP is efficient in improving components of functional capacity in patients with PD, especially in strength. Gender may be considered in the exercise program. Individuals in the bilateral disease group appeared to benefit more from exercise

    Mitochondrial superclusters influence age of onset of Parkinsonā€™s disease in a gender specific manner in the Cypriot population: A case-control study

    Get PDF
    Despite evidence supporting an involvement of mitochondrial dysfunction in the pathogenesis of some neurodegenerative disorders, there are inconsistent findings concerning mitochondrial haplogroups and their association to neurodegenerative disorders, including idiopathic Parkinson's disease (PD).To test this hypothesis for the Greek-Cypriot population, a cohort of 230 PD patients and 457 healthy matched controls were recruited. Mitochondrial haplogroup distributions for cases and controls were determined. Association tests were carried out between mitochondrial haplogroups and PD.Mitochondrial haplogroup U was associated with a reduced PD risk in the Cypriot population. After pooling mitochondrial haplogroups together into haplogroup clusters and superclusters, association tests demonstrated a significantly protective effect of mitochondrial haplogroup cluster N (xR) and supercluster LMN for PD risk only in females. In addition, for female PD cases belonging to UKJT and R (xH, xUKJT) haplogroup, the odds of having a later age of onset of PD were 13 and 15 times respectively higher than the odds for female cases with an H haplogroup.Statistically significant associations regarding PD risk and PD age of onset were mostly detected for females thus suggesting that gender is a risk modifier between mitochondrial haplogroups and PD status / PD age of onset. The biological mechanisms behind this gender specificity remain to be determined

    Novel SCN9A Mutations in a Compound Heterozygous Girl with Congenital Insensitivity to Pain

    No full text
    Congenital Insensitivity to Pain (CIP) is a rare disorder that is characterized by the inability to perceive pain. It is caused by bi-allelic inactivating mutations in the SCN9A gene, which encodes the pore-forming Ī±-subunit of the nerve voltage-gated sodium channel (Na v 1.7). Patients with CIP are unable to feel pain from noxious stimuli, including heat, but all other peripheral somatosensory modalities function normally. Often anosmia is present as an additional feature. We reported a patient with CIP caused by compound heterozygous SCN9A mutations: a novel in-frame deletion of exon 7 and a novel frameshift mutation. The identification of these mutations expands the spectrum of mutations associated with CIP

    Initial bolus of conventional versus high-dose dexamethasone in metastatic spinal cord compression

    No full text
    We randomly assigned dexamethasone in an initial bolus of 10 mg IV or 100 mg IV followed by 16 mg daily orally to 37 patients with metastatic spinal cord compression. The average pain score before the start of treatment was 5.2 (SD = 2.8) and decreased significantly (p less than 0.001) to 3.8 at 3 hrs, 2.8 at 24 hrs, and 1.4 after 1 week. There were no differences between the conventional and high-dose group on pain, ambulation, or bladder functio
    • ā€¦
    corecore