352 research outputs found

    Evaluation of the American yam bean (Pachyrhizus spp.) for storage root yield across varying eco-geographic conditions in Uganda

    Get PDF
    Open Access Article; Published online: 15 June 2019The American yam bean (Pachyrhizus spp.) is a legume crop that is exclusively used for its storage roots. The seeds are inedible due to presence of toxic rotenone. It produces high storage root yields comparable of major root crops like cassava or sweetpotato. And flower pruning more than doubles its root yield performance. Using twenty five yam bean accessions, the current study aimed to determine root yield stability and adaptability, and presence of yam bean production mega environments in Uganda. Trials were planted at three stations, Namulonge, Serere, and Kachwekano during two consecutive seasons of 2011. Fresh storage root yields were significantly different (p < 0.05) across locations with the ideal location being Namulonge (fresh storage root yield of 10.1 t ha-1), followed by Serere (8.0 t ha-1), and Kachwekano (3.1 t ha-1). Results of AMMI analysis indicated the presence of genotype-by-environment interaction for fresh storage root yield. Through AMMI estimates and GGE visual assessment, genotype 209017 was the highest yielding with mean yield of 20.7 t ha-1. Genotype 209018 with mean yield of 15.5 t ha-1 was the most stable and adapted accession in the entire discriminating environment in Uganda. From the environmental focusing plot, the six environments were grouped into two putative mega environments for yam bean production

    Unified description of Fermi and non-Fermi liquid behavior in a conserving slave boson approximation for strongly correlated impurity models

    Full text link
    We show that the presence of Fermi or non-Fermi liquid behavior in the SU(N) x SU(M) Anderson impurity models may be read off the infrared threshold exponents governing the spinon and holon dynamics in a slave boson representation of these models. We construct a conserving T-matrix approximation which recovers the exact exponents with good numerical accuracy. Our approximation includes both coherent spin flip scattering and charge fluctuation processes. For the single-channel case the tendency to form bound states drastically modifies the low energy behavior. For the multi-channel case in the Kondo limit the bound state contributions are unimportant.Comment: 4 pages, Latex, 3 postscript figures included Final version with minor changes in wording, to appear in Phys.Rev.Let

    Investigation of Staphylococcus strains with heterogeneous resistance to glycopeptides in a Turkish university hospital

    Get PDF
    BACKGROUND: The hetero-glycopeptide intermediate staphylococci is considered to be the precursor of glycopeptide intermediate staphylococci especially vancomycin intermediate Staphylococcus aureus (VISA). For this purpose, we aimed to investigate the heterogeneous resistance to glycopeptide and their frequencies in 135 Staphylococcus strains. METHODS: Heterogeneous resistance of Staphylococcus strains was detected by inoculating the strains onto Brain Heart Infusion agar supplemented with 4 mg/L of vancomycin (BHA-V4). Agar dilution method was used for determining MICs of glycopeptides and population analysis profile was performed for detecting frequency of heterogeneous resistance for the parents of selected strains on BHA-4. RESULTS: Eight (6%) out of 135 Staphylococcus strains were exhibited heterogeneous resistance to at least one glycopeptide. One (1.2%) out of 81 S. aureus was found intermediate resistance to teicoplanin (MIC 16 mg/L). Other seven strains were Staphylococcus haemolyticus (13%) out of 54 coagulase negative staphylococci (CoNS). Six of the seven strains were detected heterogeneously reducing susceptibility to vancomycin (MICs ranged between 5–8 mg/L) and teicoplanin (MICs ranged between 32–64 mg/L), and one S. haemolyticus was found heterogeneous resistance to teicoplanin (MIC 32 mg/L). Frequencies of heterogeneous resistance were measured being one in 10(6 )– 10(7 )cfu/ml. MICs of vancomycin and teicoplanin for hetero-staphylococci were determined as 2–6 folds and 3–16 folds higher than their parents, respectively. These strains were isolated from six patients (7%) and two (4%) of health care wokers hands. Hetero-VISA strain was not detected. CONCLUSION: Heterogeneous resistance to glycopeptide in CoNS strains was observed to be significantly more emergent than those of S. aureus strains (vancomycin P 0.001, teicoplanin, P 0.007). The increase MICs of glycopeptide resistance for subpopulations of staphylococci comparing with their parents could be an important clue for recognizing the early steps in the appearance of VISA strains. We suggested to screen clinical S. aureus and CoNS strains, systematically, for the presence of heterogeneously resistance to glycopeptide

    Longitudinal Evaluation of an N-Ethyl-N-Nitrosourea-Created Murine Model with Normal Pressure Hydrocephalus

    Get PDF
    Normal-pressure hydrocephalus (NPH) is a neurodegenerative disorder that usually occurs late in adult life. Clinically, the cardinal features include gait disturbances, urinary incontinence, and cognitive decline.Herein we report the characterization of a novel mouse model of NPH (designated p23-ST1), created by N-ethyl-N-nitrosourea (ENU)-induced mutagenesis. The ventricular size in the brain was measured by 3-dimensional micro-magnetic resonance imaging (3D-MRI) and was found to be enlarged. Intracranial pressure was measured and was found to fall within a normal range. A histological assessment and tracer flow study revealed that the cerebral spinal fluid (CSF) pathway of p23-ST1 mice was normal without obstruction. Motor functions were assessed using a rotarod apparatus and a CatWalk gait automatic analyzer. Mutant mice showed poor rotarod performance and gait disturbances. Cognitive function was evaluated using auditory fear-conditioned responses with the mutant displaying both short- and long-term memory deficits. With an increase in urination frequency and volume, the mutant showed features of incontinence. Nissl substance staining and cell-type-specific markers were used to examine the brain pathology. These studies revealed concurrent glial activation and neuronal loss in the periventricular regions of mutant animals. In particular, chronically activated microglia were found in septal areas at a relatively young age, implying that microglial activation might contribute to the pathogenesis of NPH. These defects were transmitted in an autosomal dominant mode with reduced penetrance. Using a whole-genome scan employing 287 single-nucleotide polymorphic (SNP) markers and further refinement using six additional SNP markers and four microsatellite markers, the causative mutation was mapped to a 5.3-cM region on chromosome 4.Our results collectively demonstrate that the p23-ST1 mouse is a novel mouse model of human NPH. Clinical observations suggest that dysfunctions and alterations in the brains of patients with NPH might occur much earlier than the appearance of clinical signs. p23-ST1 mice provide a unique opportunity to characterize molecular changes and the pathogenic mechanism of NPH

    The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impairment of cilia and flagella function underlies a growing number of human genetic diseases. Mutations in <it>hydin </it>in <it>hy3 </it>mice cause lethal communicating hydrocephalus with early onset. Hydin was recently identified as an axonemal protein; however, its function is as yet unknown.</p> <p>Results</p> <p>Here we use RNAi in <it>Trypanosoma brucei </it>to address this issue and demonstrate that loss of Hydin causes slow growth and a loss of cell motility. We show that two separate defects in newly-formed flagellar central pair microtubules underlie the loss of cell motility. At early time-points after RNAi induction, the central pair becomes mispositioned, while at later time points the central pair is lost. While the basal body is unaffected, both defects originate at the basal plate, reflecting a role for TbHydin throughout the length of the central pair.</p> <p>Conclusion</p> <p>Our data provide the first evidence of Hydin's role within the trypanosome axoneme, and reveal central pair anomalies and thus impairment of ependymal ciliary motility as the likely cause of the hydrocephalus observed in the <it>hy3 </it>mouse.</p
    corecore